Korean J Pain.  2024 Oct;37(4):299-309. 10.3344/kjp.24171.

Methylcobalamin as a candidate for chronic peripheral neuropathic pain therapy: review of molecular pharmacology action

Affiliations
  • 1Doctoral Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • 2Department of Oral Biology, School of Dentistry, Faculty of Medicine, Jenderal Soedirman University, Central Java, Indonesia
  • 3Department of Pharmacology, Faculty of Medicine, Nursing and Public Health, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • 4Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Gadjah Mada, Yoyakarta, Indonesia
  • 5Department of Dental Biomedical Science, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia

Abstract

Chronic peripheral neuropathic pain therapy currently focuses on modulating neuroinflammatory conditions. Methylcobalamin (MeCbl), a neuroregenerative agent, modulates neuroinflammation. This review aimed to explore the molecular pharmacology action of MeCbl as a chronic peripheral neuropathic pain therapeutic agent. MeCbl plays a role in various cellular processes and may have therapeutic potential in neurodegenerative diseases. Intracellular MeCbl modulates inflammation by regulating the activity of T lymphocytes and natural killer cells as well as secretion of inflammatory cytokines, namely, tumor necrosis factor-α, interleukin-6, interleukin-1β, epidermal growth factor, and neuronal growth factor. MeCbl can reduce pain symptoms in chronic neuropathic pain conditions by decreasing excitation and hyperpolarization-induced ion channel activity in medium-sized dorsal root ganglion (DRG) neurons and the expression of transient receptor potential ankyrin 1, transient receptor potential cation channel subfamily M member 8, phosphorylated p38MAPK, transient receptor potential cation channel subfamily V members 1 and 4 in the DRG, and the voltage-gated sodium channel in axons.

Keyword

Axons; Cytokines; Mecobalamin; Mononeuropathies; Neuralgia; Neurodegenerative Diseases; Neuroinflammatory Diseases; Neurons; Nervous System; Pain Management

Figure

  • Fig. 1 Chemical structure of methylcobalamin. The upper ligand consists of a methyl compound attached to a ring of cobalt. Modified from PubChem (https://pubchem.ncbi.nlm.nih.gov/compound/Methylcobalamin) [25].

  • Fig. 2 (A) A schematic mechanism of pathogenesis of peripheral neuropathic pain. Peripheral nerve injury activates macrophage in-situ to phagocytize myelin debris. Schwann cells differentiate into non-myelinating cells and phagocytize myelin debris along with macrophage. Cytokines and chemokines release from recruited circulatory neutrophil, macrophage, and T-cell (1). Neuron discharge of IL-1β, TNF-α, and IL-6 followed by histamine, serotonin (5-HT), Substance P, Bradykinin, and PG-E2 promotes peripheral and ganglion sensitization sequentially (2). Disruption in the remyelination process increase electrical activity, abnormal sensitivity to various stimulants, and abnormal contact between adjacent axons resulting in ephaptic cross-talk (3). (B) The action of MeCbl in modulating peripheral neuropathic pain. MeCbl reduces peripheral sensitization by regulating the NFKB activity of neutrophils, macrophages, and T-cells. MeCbl promotes remyelination by increasing the myelin binding protein expression and lipid synthesis of Schwann cells. MeCbl induces Ras protein methylation of neurons, enhancing the remyelination process. MeCbl regulates neuron's ion channel activation and controls peripheral and ganglionic sensitization. IL: interleukin, TNF: tumor necrosis factor, PG-E2: prostaglandin E2, MeCbl: methylcobalamin.


Reference

1. Baskozos G, Hébert HL, Pascal MM, Themistocleous AC, Macfarlane GJ, Wynick D, et al. 2023; Epidemiology of neuropathic pain: an analysis of prevalence and associated factors in UK Biobank. Pain Rep. 8:e1066. DOI: 10.1097/PR9.0000000000001066. PMID: 37090682. PMCID: PMC7614463.
2. VanDenKerkhof EG, Mann EG, Torrance N, Smith BH, Johnson A, Gilron I. 2016; An epidemiological study of neuropathic pain symptoms in Canadian adults. Pain Res Manag. 2016:9815750. DOI: 10.1155/2016/9815750. PMID: 27445636. PMCID: PMC4904601.
3. DiBonaventura MD, Sadosky A, Concialdi K, Hopps M, Kudel I, Parsons B, et al. 2017; The prevalence of probable neuropathic pain in the US: results from a multimodal general-population health survey. J Pain Res. 10:2525–38. DOI: 10.2147/JPR.S127014. PMID: 29138590. PMCID: PMC5677393.
4. Sommer C, Leinders M, Üçeyler N. 2018; Inflammation in the pathophysiology of neuropathic pain. Pain. 159:595–602. DOI: 10.1097/j.pain.0000000000001122. PMID: 29447138.
5. Ellis A, Bennett DL. 2013; Neuroinflammation and the generation of neuropathic pain. Br J Anaesth. 111:26–37. DOI: 10.1093/bja/aet128. PMID: 23794642.
6. Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, et al. 2015; Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 14:162–73. DOI: 10.1016/S1474-4422(14)70251-0. PMID: 25575710. PMCID: PMC4493167.
7. Chung MK, Wang S, Oh SL, Kim YS. 2021; Acute and chronic pain from facial skin and oral mucosa: unique neurobiology and challenging treatment. Int J Mol Sci. 22:5810. DOI: 10.3390/ijms22115810. PMID: 34071720. PMCID: PMC8198570.
8. Cartwright C, Gibson K, Read J, Cowan O, Dehar T. 2016; Long-term antidepressant use: patient perspectives of benefits and adverse effects. Patient Prefer Adherence. 10:1401–7. DOI: 10.2147/PPA.S110632. PMID: 27528803. PMCID: PMC4970636.
9. Buesing S, Costa M, Schilling JM, Moeller-Bertram T. 2019; Vitamin B12 as a treatment for pain. Pain Physician. 22:E45–52. DOI: 10.36076/ppj/2019.22.E45. PMID: 30700078.
10. Yoon S, Gianturco SL, Pavlech LL, Storm KD, Yuen MV, Mattingly AN. 2020. Methylcobalamin: summary report [Internet]. University of Maryland, Baltimore;Baltimore (MD): https://archive.hshsl.umaryland.edu/handle/10713/12216.
11. Jaya MKA, Dwicandra NMO. 2017; Effectivity analysis of neuroprotector (Vitamin B complex and mecobalamin) as neuropathic pain supportive therapy in elderly with type 2 diabetes mellitus. Asian J Pharm Clin Res. 10:320–3. DOI: 10.22159/ajpcr.2017.v10i12.21845.
12. Vasudevan D, Naik MM, Mukaddam QI. 2014; Efficacy and safety of methylcobalamin, alpha lipoic acid and pregabalin combination versus pregabalin monotherapy in improving pain and nerve conduction velocity in type 2 diabetes associated impaired peripheral neuropathic condition. [MAINTAIN]: results of a pilot study. Ann Indian Acad Neurol. 17:19–24. DOI: 10.4103/0972-2327.128535. PMID: 24753654. PMCID: PMC3992764.
13. Li S, Chen X, Li Q, Du J, Liu Z, Peng Y, et al. 2016; Effects of acetyl-L-carnitine and methylcobalamin for diabetic peripheral neuropathy: a multicenter, randomized, double-blind, controlled trial. J Diabetes Investig. 7:777–85. DOI: 10.1111/jdi.12493. PMID: 27180954. PMCID: PMC5009142.
14. Xǔ G, Xu S, Tang WZ, Xú G, Cheng C, Xu J. 2016; Local injection of methylcobalamin combined with lidocaine for acute herpetic neuralgia. Pain Med. 17:572–81. DOI: 10.1093/pm/pnv005. PMID: 26814241.
15. Xu G, Lv ZW, Feng Y, Tang WZ, Xu GX. 2013; A single-center randomized controlled trial of local methylcobalamin injection for subacute herpetic neuralgia. Pain Med. 14:884–94. DOI: 10.1111/pme.12081. PMID: 23566267.
16. Xu G, Zhou CS, Tang WZ, Xu J, Xu G, Cheng C, et al. 2020; Local administration of methylcobalamin for subacute ophthalmic herpetic neuralgia: a randomized, phase III clinical trial. Pain Pract. 20:838–49. DOI: 10.1111/papr.12909. PMID: 32372561.
17. Xǔ G, Xu S, Cheng C, Xú G, Tang WZ, Xu J. 2016; Local administration of methylcobalamin and lidocaine for acute ophthalmic herpetic neuralgia: a single-center randomized controlled trial. Pain Pract. 16:869–81. DOI: 10.1111/papr.12328. PMID: 26200815.
18. Han X, Wang L, Shi H, Zheng G, He J, Wu W, et al. 2017; Acupuncture combined with methylcobalamin for the treatment of chemotherapy-induced peripheral neuropathy in patients with multiple myeloma. BMC Cancer. 17:40. DOI: 10.1186/s12885-016-3037-z. PMID: 28068938. PMCID: PMC5223334.
19. Metin SK, Meydan B, Evman S, Dogruyol T, Baysungur V. 2017; The effect of pregabalin and methylcobalamin combination on the chronic postthoracotomy pain syndrome. Ann Thorac Surg. 103:1109–13. DOI: 10.1016/j.athoracsur.2016.09.031. PMID: 27916242.
20. Singh PM, Dehran M, Mohan VK, Trikha A, Kaur M. 2013; Analgesic efficacy and safety of medical therapy alone vs combined medical therapy and extraoral glossopharyngeal nerve block in glossopharyngeal neuralgia. Pain Med. 14:93–102. DOI: 10.1111/pme.12001. PMID: 23279193.
21. Takeda M, Matsumoto S, Sessle BJ, Shinoda M, Iwata K. 2011; Peripheral and central mechanisms of trigeminal neuropathic and inflammatory pain. J Oral Biosci. 53:318–29. DOI: 10.1016/S1349-0079(11)80025-3.
22. Costa GMF, de Oliveira AP, Martinelli PM, da Silva Camargos ER, Arantes RME, de Almeida-Leite CM. 2016; Demyelination/remyelination and expression of interleukin-1β, substance P, nerve growth factor, and glial-derived neurotrophic factor during trigeminal neuropathic pain in rats. Neurosci Lett. 612:210–8. DOI: 10.1016/j.neulet.2015.12.017. PMID: 26687274.
23. Shinoda M, Imamura Y, Hayashi Y, Noma N, Okada-Ogawa A, Hitomi S, et al. 2021; Orofacial neuropathic pain-basic research and their clinical relevancies. Front Mol Neurosci. 14:691396. DOI: 10.3389/fnmol.2021.691396. PMID: 34295221. PMCID: PMC8291146.
24. Fex Svennigsen A, Dahlin LB. 2013; Repair of the peripheral nerve-Remyelination that works. Brain Sci. 3:1182–97. DOI: 10.3390/brainsci3031182. PMID: 24961524. PMCID: PMC4061866.
25. PubChem. 2004. PubChem Compound Summary for CID 123134034, Methylcobalamin [Internet]. National Library of Medicine (US), National Center for Biotechnology Information;Bethesda (MD): Available at: https://pubchem.ncbi.nlm.nih.gov/compound/Methylcobalamin.
26. Arslan ŞA, Arslan İ, Tirnaksiz F. 2013; Cobalamins and methylcobalamin: coenzyme of vitamin B12. FABAD J Pharm Sci. 38:151–7.
27. Smith AD, Warren MJ, Refsum H. 2018; Vitamin B12. Adv Food Nutr Res. 83:215–79. DOI: 10.1016/bs.afnr.2017.11.005. PMID: 29477223.
28. Fidaleo M, Tacconi S, Sbarigia C, Passeri D, Rossi M, Tata AM, et al. 2021; Current nanocarrier strategies improve vitamin B12 pharmacokinetics, ameliorate patients' lives, and reduce costs. Nanomaterials (Basel). 11:743. DOI: 10.3390/nano11030743. PMID: 33809596. PMCID: PMC8001893.
29. Netsomboon K, Feßler A, Erletz L, Prüfert F, Ruetz M, Kieninger C, et al. 2016; Vitamin B12 and derivatives - In vitro permeation studies across Caco-2 cell monolayers and freshly excised rat intestinal mucosa. Int J Pharm. 497:129–35. DOI: 10.1016/j.ijpharm.2015.11.043.
30. Hanawa A, Ogata G, Sawamura S, Asai K, Kanzaki S, Hibino H, et al. 2020; In vivo real-time simultaneous examination of drug kinetics at two separate locations using boron-doped diamond microelectrodes. Anal Chem. 92:13742–9. DOI: 10.1021/acs.analchem.0c01707. PMID: 32786440.
31. Wheatley C. 2007; The return of the Scarlet Pimpernel: cobalamin in inflammation II - cobalamins can both selectively promote all three nitric oxide synthases (NOS), particularly iNOS and eNOS, and, as needed, selectively inhibit iNOS and nNOS. J Nutr Environ Med. 16:181–211. DOI: 10.1080/10520290701791839. PMID: 18836533. PMCID: PMC2556189.
32. Chu RC, Begley JA, Colligan PD, Hall CA. 1993; The methylcobalamin metabolism of cultured human fibroblasts. Metabolism. 42:315–9. DOI: 10.1016/0026-0495(93)90080-8. PMID: 8487649.
33. Zhang Y, Hodgson N, Trivedi M, Deth R. 2016; Neuregulin 1 promotes glutathione-dependent neuronal cobalamin metabolism by stimulating cysteine uptake. Oxid Med Cell Longev. 2016:3849087. DOI: 10.1155/2016/3849087. PMID: 27057274. PMCID: PMC4709767.
34. Temova Rakuša Ž, Roškar R, Hickey N, Geremia S. 2022; Vitamin B12 in foods, food supplements, and medicines-A review of its role and properties with a focus on its stability. Molecules. 28:240. DOI: 10.3390/molecules28010240. PMID: 36615431. PMCID: PMC9822362.
35. Paul C, Brady DM. 2017; Comparative bioavailability and utilization of particular forms of B12 supplements with potential to mitigate B12-related genetic polymorphisms. Integr Med (Encinitas). 16:42–9. DOI: 10.1158/1538-8514.SYNTHLETH-B12. PMID: 28223907. PMCID: PMC5312744.
36. Jarrett JT, Amaratunga M, Drennan CL, Scholten JD, Sands RH, Ludwig ML, et al. 1996; Mutations in the B12-binding region of methionine synthase: how the protein controls methylcobalamin reactivity. Biochemistry. 35:2464–75. DOI: 10.1021/bi952389m. PMID: 8652590.
37. Kramer PR, Strand J, Stinson C, Bellinger LL, Kinchington PR, Yee MB, et al. 2017; Role for the ventral posterior medial/posterior lateral thalamus and anterior cingulate cortex in affective/motivation pain induced by varicella zoster virus. Front Integr Neurosci. 11:27. DOI: 10.3389/fnint.2017.00027. PMID: 29089872. PMCID: PMC5651084.
38. Obeid R, Fedosov SN, Nexo E. 2015; Cobalamin coenzyme forms are not likely to be superior to cyano- and hydroxyl-cobalamin in prevention or treatment of cobalamin deficiency. Mol Nutr Food Res. 59:1364–72. DOI: 10.1002/mnfr.201500019. PMID: 25820384. PMCID: PMC4692085.
39. Scalabrino G, Peracchi M. 2006; New insights into the pathophysiology of cobalamin deficiency. Trends Mol Med. 12:247–54. DOI: 10.1016/j.molmed.2006.04.008. PMID: 16690356.
40. Scalabrino G, Corsi MM, Veber D, Buccellato FR, Pravettoni G, Manfridi A, et al. 2002; Cobalamin (vitamin B(12)) positively regulates interleukin-6 levels in rat cerebrospinal fluid. J Neuroimmunol. 127:37–43. DOI: 10.1016/S0165-5728(02)00095-4. PMID: 12044973.
41. Chemaly SM, Chen CT, van Zyl RL. 2007; Naturally occurring cobalamins have antimalarial activity. J Inorg Biochem. 101:764–73. DOI: 10.1016/j.jinorgbio.2007.01.006. PMID: 17343914.
42. Weinberg JB, Chen Y, Jiang N, Beasley BE, Salerno JC, Ghosh DK. 2009; Inhibition of nitric oxide synthase by cobalamins and cobinamides. Free Radic Biol Med. 46:1626–32. Erratum in: Free Radic Biol Med 2011; 51: 1471. DOI: 10.1016/j.freeradbiomed.2011.07.010. PMID: 19328848. PMCID: PMC2745708.
43. Rafiee S, Asadollahi K, Riazi G, Ahmadian S, Saboury AA. 2017; Vitamin B12 inhibits tau fibrillization via binding to cysteine residues of tau. ACS Chem Neurosci. 8:2676–82. DOI: 10.1021/acschemneuro.7b00230. PMID: 28841372.
44. Shah T, Joshi K, Mishra S, Otiv S, Kumbar V. 2016; Molecular and cellular effects of vitamin B12 forms on human trophoblast cells in presence of excessive folate. Biomed Pharmacother. 84:526–34. DOI: 10.1016/j.biopha.2016.09.071. PMID: 27693961.
45. Narayanan N, Nair DT. 2020; Vitamin B12 may inhibit RNA-dependent-RNA polymerase activity of nsp12 from the SARS-CoV-2 virus. IUBMB Life. 72:2112–20. DOI: 10.1002/iub.2359. PMID: 32812340. PMCID: PMC7461454.
46. Xu J, Wang W, Zhong XX, Feng Y, Wei X, Liu XG. 2016; Methylcobalamin ameliorates neuropathic pain induced by vincristine in rats: effect on loss of peripheral nerve fibers and imbalance of cytokines in the spinal dorsal horn. Mol Pain. 12:1744806916657089. DOI: 10.1177/1744806916657089. PMID: 27306413. PMCID: PMC4956006.
47. Zhang M, Han W, Zheng J, Meng F, Jiao X, Hu S, et al. 2015; Inhibition of hyperpolarization-activated cation current in medium-sized DRG neurons contributed to the antiallodynic effect of methylcobalamin in the rat of a chronic compression of the DRG. Neural Plast. 2015:197392. DOI: 10.1155/2015/197392. PMID: 26101670. PMCID: PMC4460234.
48. Mutiawati E, Meliala L, Aji D, Wasito W, Muchlisin ZA. 2015; A preliminary study on the effect of methylcobalamin application on reducing neuropathic pain. Hum Vet Med. 7:101–3.
49. Mutiawati E, Meliala KRTL, Partadiredja G, Adji D, Wasito R. 2021; Effect of methylcobalamin on voltage-gated sodium channels (VGSCS) expression in neuropathic painanimal model. Biomed Pharmacol J. 14:1033–8. DOI: 10.13005/bpj/2205.
50. Zhang D, Sun J, Yang B, Ma S, Zhang C, Zhao G. 2020; Therapeutic effect of Tetrapanax papyriferus and hederagenin on chronic neuropathic pain of chronic constriction injury of sciatic nerve rats based on KEGG pathway prediction and experimental verification. Evid Based Complement Alternat Med. 2020:2545806. DOI: 10.1155/2020/2545806. PMID: 32617100. PMCID: PMC7306840.
51. Okada K, Tanaka H, Temporin K, Okamoto M, Kuroda Y, Moritomo H, et al. 2010; Methylcobalamin increases Erk1/2 and Akt activities through the methylation cycle and promotes nerve regeneration in a rat sciatic nerve injury model. Exp Neurol. 222:191–203. DOI: 10.1016/j.expneurol.2009.12.017. PMID: 20045411.
52. Nishimoto S, Tanaka H, Okamoto M, Okada K, Murase T, Yoshikawa H. 2015; Methylcobalamin promotes the differentiation of Schwann cells and remyelination in lysophosphatidylcholine-induced demyelination of the rat sciatic nerve. Front Cell Neurosci. 9:298. DOI: 10.3389/fncel.2015.00298. PMID: 26300733. PMCID: PMC4523890.
53. Liao WC, Wang YJ, Huang MC, Tseng GF. 2013; Methylcobalamin facilitates collateral sprouting of donor axons and innervation of recipient muscle in end-to-side neurorrhaphy in rats. PLoS One. 8:e76302. DOI: 10.1371/journal.pone.0076302. PMID: 24098787. PMCID: PMC3786991.
54. Sawangjit R, Thongphui S, Chaichompu W, Phumart P. 2020; Efficacy and safety of mecobalamin on peripheral neuropathy: a systematic review and meta-analysis of randomized controlled trials. J Altern Complement Med. 26:1117–29. DOI: 10.1089/acm.2020.0068. PMID: 32716261.
55. Sil A, Kumar H, Mondal RD, Anand SS, Ghosal A, Datta A, et al. 2018; A randomized, open labeled study comparing the serum levels of cobalamin after three doses of 500 mcg vs. a single dose methylcobalamin of 1500 mcg in patients with peripheral neuropathy. Korean J Pain. 31:183–90. DOI: 10.3344/kjp.2018.31.3.183. PMID: 30013732. PMCID: PMC6037815.
Full Text Links
  • KJP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr