Yonsei Med J.  2024 Oct;65(10):611-618. 10.3349/ymj.2024.0007.

Need for Transparency and Clinical Interpretability in Hemorrhagic Stroke Artificial Intelligence Research: Promoting Effective Clinical Application

Affiliations
  • 1Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Abstract

Purpose
This study aimed to evaluate the quality of artificial intelligence (AI)/machine learning (ML) studies on hemorrhagic stroke using the Minimum Information for Medical AI Reporting (MINIMAR) and Minimum Information About Clinical Artificial Intelligence Modeling (MI-CLAIM) frameworks to promote clinical application.
Materials and Methods
PubMed, MEDLINE, and Embase were searched for AI/ML studies on hemorrhagic stroke. Out of the 531 articles found, 29 relevant original research articles were included. MINIMAR and MI-CLAIM scores were assigned by two experienced radiologists to assess the quality of the studies.
Results
We analyzed 29 investigations that utilized AI/ML in the field of hemorrhagic stroke, involving a median of 224.5 patients. The majority of studies focused on diagnostic outcomes using computed tomography scans (89.7%) and were published in computer science journals (48.3%). The overall adherence rates to reporting guidelines, as assessed through the MINIMAR and MI-CLAIM frameworks, were 47.6% and 46.0%, respectively. In MINIMAR, none of the studies reported the socioeconomic status of the patients or how missing values had been addressed. In MI-CLAIM, only two studies applied model-examination techniques to improve model interpretability. Transparency and reproducibility were limited, as only 10.3% of the studies had publicly shared their code. Cohen’s kappa between the two radiologists was 0.811 and 0.779 for MINIMAR and MI-CLAIM, respectively.
Conclusion
The overall reporting quality of published AI/ML studies on hemorrhagic stroke is suboptimal. It is necessary to incorporate model examination techniques for interpretability and promote code openness to enhance transparency and increase the clinical applicability of AI/ML studies.

Keyword

Hemorrhagic stroke; artificial intelligence; machine learning; reporting guidelines
Full Text Links
  • YMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr