Ann Lab Med.  2024 Sep;44(5):385-391. 10.3343/alm.2024.0053.

Next-Generation Patient-Based Real-Time Quality Control Models

Affiliations
  • 1Department of Laboratory Medicine, Zhongshan Hospital, Fudan University Shanghai, Shanghai, China
  • 2University of the Chinese Academy of Sciences, Beijing, China
  • 3Shenzhen Mindray Bio-Medical Electronics Co., Shenzhen, China
  • 4Engineering Cluster, Singapore Institute of Technology, Singapore
  • 5Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
  • 6Department of Laboratory Medicine, National University Hospital, Singapore
  • 7Department of Laboratory Medicine, Beijing Chaoyang Hospital, affiliated with Capital Medical University, Beijing, China
  • 8Royal College of Pathologists of Australasia Quality Assurance Programs, Sydney, New South Wales, Australia

Abstract

Patient-based real-time QC (PBRTQC) uses patient-derived data to assess assay performance. PBRTQC algorithms have advanced in parallel with developments in computer science and the increased availability of more powerful computers. The uptake of Artificial Intelligence in PBRTQC has been rapid, with many stated advantages over conventional approaches. However, until this review, there has been no critical comparison of these. The PBRTQC algorithms based on moving averages, regression-adjusted real-time QC, neural networks and anomaly detection are described and contrasted. As Artificial Intelligence tools become more available to laboratories, user-friendly and computationally efficient, the major disadvantages, such as complexity and the need for high computing resources, are reduced and become attractive to implement in PBRTQC applications.

Keyword

Artificial intelligence; Machine learning; Patient-based real-time QC; QC

Figure

  • Fig. 1 Summary of three next-generation methods to improve PBRTQC performance. Abbreviations: PBRTQC, patient-based real-time QC; RARTQC, regression-adjusted real-time QC; NN, neural network; SVM, support vector machine; RF, random forest.


Reference

References

1. Badrick T, Cervinski M, Loh TP. 2019; A primer on patient-based quality control techniques. Clin Biochem. 64:1–5. DOI: 10.1016/j.clinbiochem.2018.12.004. PMID: 30550876.
Article
2. 2022. Medical laboratories: requirements for quality and competence. ISO 15189:2022. International Organization for Standardization;DOI: 10.3403/02769708u.
3. Loh TP, Cervinski MA, Katayev A, Bietenbeck A, van Rossum H, Badrick T, et al. 2019; Recommendations for laboratory informatics specifications needed for the application of patient-based real time quality control. Clin Chim Acta. 495:625–9. DOI: 10.1016/j.cca.2019.06.009. PMID: 31194967.
Article
4. Badrick T, Loh TP. 2023; Knowledge, attitude, and practice of patient-based real-time quality control in Australasia. J Lab Precis Med. 8:23. DOI: 10.21037/jlpm-23-14.
Article
5. Badrick T, Bietenbeck A, Cervinski MA, Katayev A, van Rossum HH, Loh TP, et al. 2019; Patient-based real-time quality control: review and recommendations. Clin Chem. 65:962–71. DOI: 10.1373/clinchem.2019.305482. PMID: 31263035.
Article
6. Jones GRD. 2016; Average of delta: a new quality control tool for clinical laboratories. Ann Clin Biochem. 53:133–40. DOI: 10.1177/0004563215581400. PMID: 25800407.
Article
7. Lim CY, Badrick T, Loh TP. 2020; Patient-based quality control for glucometers: using the moving sum of positive patient results and moving average. Biochem Med (Zagreb). 30:020709. DOI: 10.11613/BM.2020.020709. PMID: 32550817. PMCID: PMC7271757.
8. Liu J, Tan CH, Badrick T, Loh TP. 2018; Moving standard deviation and moving sum of outliers as quality tools for monitoring analytical precision. Clin Biochem. 52:112–6. DOI: 10.1016/j.clinbiochem.2017.10.009. PMID: 29107011.
Article
9. Bietenbeck A, Cervinski MA, Katayev A, Loh TP, van Rossum HH, Badrick T. 2020; Understanding patient-based real-time quality control using simulation modeling. Clin Chem. 66:1072–83. DOI: 10.1093/clinchem/hvaa094. PMID: 32637994.
Article
10. Zhou Q, Loh TP, Badrick T, Lim CY. 2021; Impact of combining data from multiple instruments on performance of patient-based real-time quality control. Biochem Med (Zagreb). 31:020705. DOI: 10.11613/BM.2021.020705. PMID: 33927555. PMCID: PMC8047783.
Article
11. Loh TP, Bietenbeck A, Cervinski MA, van Rossum HH, Katayev A, Badrick T, et al. 2020; Recommendation for performance verification of patient-based real-time quality control. Clin Chem Lab Med. 58:1205–13. DOI: 10.1515/cclm-2019-1024. PMID: 32049646.
Article
12. Zhou R, Wang W, Padoan A, Wang Z, Feng X, Han Z, et al. 2022; Traceable machine learning real-time quality control based on patient data. Clin Chem Lab Med. 60:1998–2004. DOI: 10.1515/cclm-2022-0548. PMID: 35852126.
Article
13. Zhou R, Liang YF, Cheng HL, Padoan A, Wang Z, Feng X, et al. 2022; A multi-model fusion algorithm as a real-time quality control tool for small shift detection. Comput Biol Med. 148:105866. DOI: 10.1016/j.compbiomed.2022.105866. PMID: 35849951.
Article
14. Man D, Mu R, Zhang K, Zhou Z, Kang H. 2023; Patient-based pre-classified real-time quality control (PCRTQC). Clin Chim Acta. 549:117562. DOI: 10.1016/j.cca.2023.117562. PMID: 37722577.
Article
15. Liang YF, Padoan A, Wang Z, Chen C, Wang QT, Plebani M, et al. 2023; Machine learning-based nonlinear regression-adjusted real-time quality control modeling: a multi-center study. Clin Chem Lab Med. 62:635–45. DOI: 10.1515/cclm-2023-0964. PMID: 37982680.
Article
16. Cervinski MA. 2021; Pushing patient-based quality control forward through regression. Clin Chem. 67:1299–300. DOI: 10.1093/clinchem/hvab155. PMID: 34487154.
Article
17. Qiu P. 2013. Introduction to statistical process control. 1st ed. Chapman and Hall/CRC;New York: DOI: 10.1201/b15016.
18. Ng D, Polito FA, Cervinski MA. 2016; Optimization of a moving averages program using a simulated annealing algorithm: the goal is to monitor the process not the patients. Clin Chem. 62:1361–71. DOI: 10.1373/clinchem.2016.257055. PMID: 27540031.
Article
19. Duan X, Wang B, Zhu J, Zhang C, Jiang W, Zhou J, et al. 2021; Regression-adjusted real-time quality control. Clin Chem. 67:1342–50. DOI: 10.1093/clinchem/hvab115. PMID: 34355737.
Article
20. Alwan LC, Bissell MG. 1988; Time series modeling for quality control in clinical chemistry. Clin Chem. 34:1396–406. DOI: 10.1093/clinchem/34.7.1396. PMID: 3390910.
Article
21. Hamilton JD. 2020. Time series analysis. Princeton University Press;New Jersey:
22. Somnay YR, Craven M, McCoy KL, Carty SE, Wang TS, Greenberg CC, et al. 2017; Improving diagnostic recognition of primary hyperparathyroidism with machine learning. Surgery. 161:1113–21. DOI: 10.1016/j.surg.2016.09.044. PMID: 27989606. PMCID: PMC5367958.
Article
23. Weiß CH, Lu Z. 2015; SPC methods for time-dependent processes of counts-A literature review. Cogent Math. 2:111116. DOI: 10.1080/23311835.2015.1111116.
Article
24. Tran PH, Ahmadi Nadi A, Nguyen TH, Tran KD, Tran KP. Tran KP, editor. 2022. Application of machine learning in statistical process control charts: a survey and perspective. Control charts and machine learning for anomaly detection in manufacturing. Springer;Cham: p. 7–42. DOI: 10.1007/978-3-030-83819-5_2. PMCID: PMC9633741.
25. Alwan LC, Roberts HV. 1988; Time-series modeling for statistical process control. J Bus Econ Stat. 6:87–95. DOI: 10.1080/07350015.1988.10509640.
Article
26. Makridakis S, Spiliotis E, Assimakopoulos V. 2018; Statistical and machine learning forecasting methods: concerns and ways forward. PLOS ONE. 13:e0194889. DOI: 10.1371/journal.pone.0194889. PMID: 29584784. PMCID: PMC5870978. PMID: d8c8193e8a234c1a826a807560407178.
Article
27. Han Z, Zhao J, Leung H, Ma KF, Wang W. 2021; A review of deep learning models for time series prediction. IEEE Sens J. 21:7833–48. DOI: 10.1109/JSEN.2019.2923982.
Article
28. Li XR, Ban XJ, Yuan ZL, Qiao HR. 2022; Review on deep learning models time series forecasting in industry. Chin J Eng. 44:757–66.
29. Pirani M, Thakkar P, Jivrani P, Bohara MH, Garg D. 2022. A comparative analysis of Arima, GRU, LSTM and BiLSTM on financial time series forecasting. In : 2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE); Ballari, India. p. 1–6. DOI: 10.1109/ICDCECE53908.2022.9793213.
Article
30. Zhou H, Zhang S, Peng J, Zhang S, Li J, Xiong H, et al. 2021; Informer: beyond efficient transformer for long sequence time-series forecasting. AAAI. 35:11106–15. DOI: 10.1609/aaai.v35i12.17325.
Article
31. Pang G, Shen C, Cao L, Van Den Hengel A. 2022; Deep learning for anomaly detection: a review. ACM Comput Surv. 54:1–38. DOI: 10.1145/3439950.
32. Kong J, Kowalczyk W, Menzel S, Bäck T. 2020. Improving imbalanced classification by anomaly detection. Parallel Problem Solving from Nature-PPSN XVI. Lecture Note in Computer Science, 12269. Springer;Cham: DOI: 10.1007/978-3-030-58112-1_35.
33. Akcay S, Atapour-Abarghouei A, Breckon TP. GANomaly: semi-supervised anomaly detection via adversarial training. In : Computer Vision-ACCV 2018: 14th Asian Conference on Computer Vision; December 2-6, 2018; Perth, Australia. p. Revised Selected Papers, part III: 622–37. DOI: 10.1007/978-3-030-20893-6_39.
Article
34. Kim JM, Ha ID. 2022; Deep learning-based residual control chart for count data. Qual Eng. 34:370–81. DOI: 10.1080/08982112.2022.2044049.
Article
35. Badrick T, Brown AS. 2023; Identifying human factors as a source of error in laboratory quality control. J Lab Precis Med. 8:16. DOI: 10.21037/jlpm-23-7.
Article
36. Duan X, Wang B, Zhu J, Shao W, Wang H, Shen J, et al. 2020; Assessment of patient-based real-time quality control algorithm performance on different types of analytical error. Clin Chim Acta. 511:329–35. DOI: 10.1016/j.cca.2020.10.006. PMID: 33127347.
Article
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr