2. 2022. Medical laboratories: requirements for quality and competence. ISO 15189:2022. International Organization for Standardization;DOI:
10.3403/02769708u.
3. Loh TP, Cervinski MA, Katayev A, Bietenbeck A, van Rossum H, Badrick T, et al. 2019; Recommendations for laboratory informatics specifications needed for the application of patient-based real time quality control. Clin Chim Acta. 495:625–9. DOI:
10.1016/j.cca.2019.06.009. PMID:
31194967.
Article
4. Badrick T, Loh TP. 2023; Knowledge, attitude, and practice of patient-based real-time quality control in Australasia. J Lab Precis Med. 8:23. DOI:
10.21037/jlpm-23-14.
Article
5. Badrick T, Bietenbeck A, Cervinski MA, Katayev A, van Rossum HH, Loh TP, et al. 2019; Patient-based real-time quality control: review and recommendations. Clin Chem. 65:962–71. DOI:
10.1373/clinchem.2019.305482. PMID:
31263035.
Article
7. Lim CY, Badrick T, Loh TP. 2020; Patient-based quality control for glucometers: using the moving sum of positive patient results and moving average. Biochem Med (Zagreb). 30:020709. DOI:
10.11613/BM.2020.020709. PMID:
32550817. PMCID:
PMC7271757.
9. Bietenbeck A, Cervinski MA, Katayev A, Loh TP, van Rossum HH, Badrick T. 2020; Understanding patient-based real-time quality control using simulation modeling. Clin Chem. 66:1072–83. DOI:
10.1093/clinchem/hvaa094. PMID:
32637994.
Article
10. Zhou Q, Loh TP, Badrick T, Lim CY. 2021; Impact of combining data from multiple instruments on performance of patient-based real-time quality control. Biochem Med (Zagreb). 31:020705. DOI:
10.11613/BM.2021.020705. PMID:
33927555. PMCID:
PMC8047783.
Article
11. Loh TP, Bietenbeck A, Cervinski MA, van Rossum HH, Katayev A, Badrick T, et al. 2020; Recommendation for performance verification of patient-based real-time quality control. Clin Chem Lab Med. 58:1205–13. DOI:
10.1515/cclm-2019-1024. PMID:
32049646.
Article
12. Zhou R, Wang W, Padoan A, Wang Z, Feng X, Han Z, et al. 2022; Traceable machine learning real-time quality control based on patient data. Clin Chem Lab Med. 60:1998–2004. DOI:
10.1515/cclm-2022-0548. PMID:
35852126.
Article
13. Zhou R, Liang YF, Cheng HL, Padoan A, Wang Z, Feng X, et al. 2022; A multi-model fusion algorithm as a real-time quality control tool for small shift detection. Comput Biol Med. 148:105866. DOI:
10.1016/j.compbiomed.2022.105866. PMID:
35849951.
Article
15. Liang YF, Padoan A, Wang Z, Chen C, Wang QT, Plebani M, et al. 2023; Machine learning-based nonlinear regression-adjusted real-time quality control modeling: a multi-center study. Clin Chem Lab Med. 62:635–45. DOI:
10.1515/cclm-2023-0964. PMID:
37982680.
Article
17. Qiu P. 2013. Introduction to statistical process control. 1st ed. Chapman and Hall/CRC;New York: DOI:
10.1201/b15016.
18. Ng D, Polito FA, Cervinski MA. 2016; Optimization of a moving averages program using a simulated annealing algorithm: the goal is to monitor the process not the patients. Clin Chem. 62:1361–71. DOI:
10.1373/clinchem.2016.257055. PMID:
27540031.
Article
21. Hamilton JD. 2020. Time series analysis. Princeton University Press;New Jersey:
22. Somnay YR, Craven M, McCoy KL, Carty SE, Wang TS, Greenberg CC, et al. 2017; Improving diagnostic recognition of primary hyperparathyroidism with machine learning. Surgery. 161:1113–21. DOI:
10.1016/j.surg.2016.09.044. PMID:
27989606. PMCID:
PMC5367958.
Article
24. Tran PH, Ahmadi Nadi A, Nguyen TH, Tran KD, Tran KP. Tran KP, editor. 2022. Application of machine learning in statistical process control charts: a survey and perspective. Control charts and machine learning for anomaly detection in manufacturing. Springer;Cham: p. 7–42. DOI:
10.1007/978-3-030-83819-5_2. PMCID:
PMC9633741.
27. Han Z, Zhao J, Leung H, Ma KF, Wang W. 2021; A review of deep learning models for time series prediction. IEEE Sens J. 21:7833–48. DOI:
10.1109/JSEN.2019.2923982.
Article
28. Li XR, Ban XJ, Yuan ZL, Qiao HR. 2022; Review on deep learning models time series forecasting in industry. Chin J Eng. 44:757–66.
29. Pirani M, Thakkar P, Jivrani P, Bohara MH, Garg D. 2022. A comparative analysis of Arima, GRU, LSTM and BiLSTM on financial time series forecasting. In : 2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE); Ballari, India. p. 1–6. DOI:
10.1109/ICDCECE53908.2022.9793213.
Article
30. Zhou H, Zhang S, Peng J, Zhang S, Li J, Xiong H, et al. 2021; Informer: beyond efficient transformer for long sequence time-series forecasting. AAAI. 35:11106–15. DOI:
10.1609/aaai.v35i12.17325.
Article
31. Pang G, Shen C, Cao L, Van Den Hengel A. 2022; Deep learning for anomaly detection: a review. ACM Comput Surv. 54:1–38. DOI:
10.1145/3439950.
32. Kong J, Kowalczyk W, Menzel S, Bäck T. 2020. Improving imbalanced classification by anomaly detection. Parallel Problem Solving from Nature-PPSN XVI. Lecture Note in Computer Science, 12269. Springer;Cham: DOI:
10.1007/978-3-030-58112-1_35.
33. Akcay S, Atapour-Abarghouei A, Breckon TP. GANomaly: semi-supervised anomaly detection via adversarial training. In : Computer Vision-ACCV 2018: 14th Asian Conference on Computer Vision; December 2-6, 2018; Perth, Australia. p. Revised Selected Papers, part III: 622–37. DOI:
10.1007/978-3-030-20893-6_39.
Article
35. Badrick T, Brown AS. 2023; Identifying human factors as a source of error in laboratory quality control. J Lab Precis Med. 8:16. DOI:
10.21037/jlpm-23-7.
Article
36. Duan X, Wang B, Zhu J, Shao W, Wang H, Shen J, et al. 2020; Assessment of patient-based real-time quality control algorithm performance on different types of analytical error. Clin Chim Acta. 511:329–35. DOI:
10.1016/j.cca.2020.10.006. PMID:
33127347.
Article