Korean J Sports Med.  2024 Sep;42(3):165-175. 10.5763/kjsm.2024.42.3.165.

Application of Blood Flow Restriction Exercise in Knee Patients: Current Concepts Review

Affiliations
  • 1Knee Center, KonKuk University Medical Center, Seoul, Korea
  • 2ports Medical Center, Hanyang University Myongji Hospital, Ilsan, Korea
  • 3Sports Medical Center, Konkuk University Medical Center, Seoul, Korea

Abstract

n patients who have undergone knee joint surgery or suffer from osteoarthritis, weakened quadriceps muscle strength is often observed. This can lead to various pathological issues in the long term, such as abnormal gait and persistent knee pain. Due to the need to protect against pain or surgical site complications, high-intensity exercise is often restricted for most patients with muscle atrophy in the knee joint due to surgery or osteoarthritis or surgery. To overcome this challenge, various methods are being attempted, including exercise combined with neuromuscular electrical stimulation, blood flow restriction (BFR) exercise, and biofeedback exercise. Recently, BFR exercise has garnered attention in line with these strategic trends. Applying low-intensity BFR exercise to patients who have undergone anterior cruciate ligament reconstruction surgery or suffer from knee joint osteoarthritis, most studies report improvements in strength, muscle mass, and functional enhancement of the knee joint. Compared to non-BFR high-intensity exercise, it has been reported that increases in maximal strength and muscle mass are similar, but pain reduction is superior with BFR exercise. Engaging in low-intensity BFR exercise for a sufficient duration can minimize the risk of injury associated with high-intensity exercise while maximizing the exercise’s effectiveness, leading to symptom improvement and enhancement of knee joint function. Furthermore, when conducted according to specified manuals, the likelihood of cardiovascular imbalance, muscle damage, thrombosis, and embolism due to BFR is low, making it a safe rehabilitation method.

Keyword

Blood flow restriction therapy; Blood flow restriction exerciset; KAATSU training; Anterior cruciate ligament reconstruction; Knee osteoarthritis

Figure

  • Fig. 1 Blood flow restriction instruments consist of tourniquet cuff, blood pressure gauge, and pump. Tourniquet cuff is used to partially restrict arterial inflow and fully restrict venous outflow during exercise. The blood pressure gauge is used to measure the pressure within the cuff. The pump is used to inflate the tourniquet cuff to the desired pressure.

  • Fig. 2 Mechanism of blood flow restriction exercise. IGF; insulin like growth factor.

  • Fig. 3 Algorithm for blood flow restriction training (BFRT) in a similar protocol as reported in the previous review article of Scott et al.48 (Sports Med 2015;45:313-25).

  • Fig. 4 Blood flow restriction-voluntary resistance exercise.


Reference

1. Hassan BS, Mockett S, Doherty M. 2001; Static postural sway, proprioception, and maximal voluntary quadriceps contraction in patients with knee osteoarthritis and normal control subjects. Ann Rheum Dis. 60:612–8. DOI: 10.1136/ard.60.6.612. PMID: 11350851. PMCID: PMC1753664.
2. Segal NA, Glass NA, Felson DT, et al. 2010; Effect of quadriceps strength and proprioception on risk for knee osteoarthritis. Med Sci Sports Exerc. 42:2081–8. DOI: 10.1249/MSS.0b013e3181dd902e. PMID: 20351594. PMCID: PMC2921020.
3. Gupta R, Singhal A, Malhotra A, Soni A, Masih GD, Raghav M. 2020; Predictors for Anterior Cruciate Ligament (ACL) re-injury after successful primary ACL Reconstruction (ACLR). Malays Orthop J. 14:50–6. DOI: 10.5704/MOJ.2011.009. PMID: 33403062. PMCID: PMC7752004.
4. Thomas AC, Wojtys EM, Brandon C, Palmieri-Smith RM. 2016; Muscle atrophy contributes to quadriceps weakness after anterior cruciate ligament reconstruction. J Sci Med Sport. 19:7–11. DOI: 10.1016/j.jsams.2014.12.009. PMID: 25683732. PMCID: PMC4500756.
5. Hughes L, Rosenblatt B, Haddad F, et al. 2019; Comparing the effectiveness of blood flow restriction and traditional heavy load resistance training in the post-surgery rehabilitation of anterior cruciate ligament reconstruction patients: a UK national health service randomised controlled trial. Sports Med. 49:1787–805. DOI: 10.1007/s40279-019-01137-2. PMID: 31301034.
6. Harper SA, Roberts LM, Layne AS, et al. 2019; Blood-flow restriction resistance exercise for older adults with knee osteoarthritis: a pilot randomized clinical trial. J Clin Med. 8:265. DOI: 10.3390/jcm8020265. PMID: 30795545. PMCID: PMC6406824.
7. Ferraz RB, Gualano B, Rodrigues R, et al. 2018; Benefits of resistance training with blood flow restriction in knee osteoarthritis. Med Sci Sports Exerc. 50:897–905. DOI: 10.1249/MSS.0000000000001530. PMID: 29266093.
8. Bryk FF, Dos Reis AC, Fingerhut D, et al. 2016; Exercises with partial vascular occlusion in patients with knee osteoarthritis: a randomized clinical trial. Knee Surg Sports Traumatol Arthrosc. 24:1580–6. DOI: 10.1007/s00167-016-4064-7. PMID: 26971109.
9. Kong DH, Jung WS, Yang SJ, Kim JG, Park HY, Kim J. 2022; Effects of neuromuscular electrical stimulation and blood flow restriction in rehabilitation after anterior cruciate ligament reconstruction. Int J Environ Res Public Health. 19:15041. DOI: 10.3390/ijerph192215041. PMID: 36429760. PMCID: PMC9690111.
10. Gabler C, Kitzman PH, Mattacola CG. 2013; Targeting quadriceps inhibition with electromyographic biofeedback: a neuroplastic approach. Crit Rev Biomed Eng. 41:125–35. DOI: 10.1615/CritRevBiomedEng.2013008373. PMID: 24580566.
11. Okita K, Takada S, Morita N, et al. 2019; Resistance training with interval blood flow restriction effectively enhances intramuscular metabolic stress with less ischemic duration and discomfort. Appl Physiol Nutr Metab. 44:759–64. DOI: 10.1139/apnm-2018-0321. PMID: 30566362.
12. Asadi MB, Sharifi H, Abedi B, Fatolahi H. 2020; Acute inflammatory response to a single bout of resistance exercise with or without blood flow restriction. Int J Sport Stud Health. 3:e110594. DOI: 10.5812/intjssh.110594.
13. Bobes Álvarez C, Issa-Khozouz Santamaría P, Fernández-Matías R, et al. 2020; Comparison of blood flow restriction training versus non-occlusive training in patients with anterior cruciate ligament reconstruction or knee osteoarthritis: a systematic review. J Clin Med. 10:68. DOI: 10.3390/jcm10010068. PMID: 33375515. PMCID: PMC7796201.
14. Sato Y. 2005; The history and future of KAATSU training. Int J KAATSU Training Res. 1:1–5. DOI: 10.3806/ijktr.1.1.
15. Abe T, Kearns CF, Sato Y. 2006; Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol (1985). 100:1460–6. DOI: 10.1152/japplphysiol.01267.2005. PMID: 16339340.
16. Patterson SD, Hughes L, Warmington S, et al. 2019; Blood flow restriction exercise: considerations of methodology, application, and safety. Front Physiol. 10:533. DOI: 10.3389/fphys.2019.00533. PMID: 31156448. PMCID: PMC6530612.
17. Hughes L, Paton B, Rosenblatt B, Gissane C, Patterson SD. 2017; Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis. Br J Sports Med. 51:1003–11. DOI: 10.1136/bjsports-2016-097071. PMID: 28259850.
18. Fry CS, Glynn EL, Drummond MJ, et al. 2010; Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J Appl Physiol (1985). 108:1199–209. DOI: 10.1152/japplphysiol.01266.2009. PMID: 20150565. PMCID: PMC2867530.
19. Fujita S, Abe T, Drummond MJ, et al. 2007; Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol (1985). 103:903–10. DOI: 10.1152/japplphysiol.00195.2007. PMID: 17569770.
20. Hwang PS, Willoughby DS. 2019; Mechanisms behind blood flow-restricted training and its effect toward muscle growth. J Strength Cond Res. 33 Suppl 1:S167–79. DOI: 10.1519/JSC.0000000000002384. PMID: 30011262.
21. Dreyer HC, Fujita S, Cadenas JG, Chinkes DL, Volpi E, Rasmussen BB. 2006; Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol. 576(Pt 2):613–24. DOI: 10.1113/jphysiol.2006.113175. PMID: 16873412. PMCID: PMC1890364.
22. Lambert B, Hedt CA, Jack RA, et al. Blood flow restriction therapy preserves whole limb bone and muscle following ACL reconstruction. Orthop J Sports Med. 2019; 7(3_suppl2):DOI: 10.1177/2325967119S00196. PMCID: PMC6447983.
23. Ohta H, Kurosawa H, Ikeda H, Iwase Y, Satou N, Nakamura S. 2003; Low-load resistance muscular training with moderate restriction of blood flow after anterior cruciate ligament reconstruction. Acta Orthop Scand. 74:62–8. DOI: 10.1080/00016470310013680. PMID: 12635796.
24. Takarada Y, Takazawa H, Ishii N. 2000; Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med Sci Sports Exerc. 32:2035–9. DOI: 10.1097/00005768-200012000-00011. PMID: 11128848.
25. Žargi T, Drobnič M, Stražar K, Kacin A. 2018; Short-term preconditioning with blood flow restricted exercise preserves quadriceps muscle endurance in patients after anterior cruciate ligament reconstruction. Front Physiol. 9:1150. DOI: 10.3389/fphys.2018.01150. PMID: 30197599. PMCID: PMC6118218.
26. Karampampa C, Papasoulis E, Hatzimanouil D, Koutras G, Totlis T. 2023; The effects of exercise with blood flow restriction (BFR) in the post operative rehabilitation of anterior cruciate ligament (ACL) reconstruction patients: a case series. J Orthop Res Ther. 8:1314. DOI: 10.29011/2575-8241.001314.
27. Jack RA 2nd, Lambert BS, Hedt CA, Delgado D, Goble H, McCulloch PC. 2023; Blood flow restriction therapy preserves lower extremity bone and muscle mass after ACL reconstruction. Sports Health. 15:361–71. DOI: 10.1177/19417381221101006. PMID: 35762124. PMCID: PMC10170230.
28. McAlindon TE, Cooper C, Kirwan JR, Dieppe PA. 1993; Determinants of disability in osteoarthritis of the knee. Ann Rheum Dis. 52:258–62. DOI: 10.1136/ard.52.4.258. PMID: 8484690. PMCID: PMC1005622.
29. Segal NA, Williams GN, Davis MC, Wallace RB, Mikesky AE. 2015; Efficacy of blood flow-restricted, low-load resistance training in women with risk factors for symptomatic knee osteoarthritis. PM R. 7:376–84. DOI: 10.1016/j.pmrj.2014.09.014. PMID: 25289840. PMCID: PMC4385750.
30. Segal N, Davis MD, Mikesky AE. 2015; Efficacy of blood flow-restricted low-load resistance training for quadriceps strengthening in men at risk of symptomatic knee osteoarthritis. Geriatr Orthop Surg Rehabil. 6:160–7. DOI: 10.1177/2151458515583088. PMID: 26328230. PMCID: PMC4536503.
31. Mattocks KT, Jessee MB, Counts BR, et al. 2017; The effects of upper body exercise across different levels of blood flow restriction on arterial occlusion pressure and perceptual responses. Physiol Behav. 171:181–6. DOI: 10.1016/j.physbeh.2017.01.015. PMID: 28088558.
32. Hughes L, Patterson SD. 2020; The effect of blood flow restriction exercise on exercise-induced hypoalgesia and endogenous opioid and endocannabinoid mechanisms of pain modulation. J Appl Physiol (1985). 128:914–24. DOI: 10.1152/japplphysiol.00768.2019. PMID: 32105522.
33. Neto GR, Sousa MS, Costa e Silva GV, Gil AL, Salles BF, Novaes JS. 2016; Acute resistance exercise with blood flow restriction effects on heart rate, double product, oxygen saturation and perceived exertion. Clin Physiol Funct Imaging. 36:53–9. DOI: 10.1111/cpf.12193. PMID: 25257752.
34. Nielsen JL, Aagaard P, Prokhorova TA, et al. 2017; Blood flow restricted training leads to myocellular macrophage infiltration and upregulation of heat shock proteins, but no apparent muscle damage. J Physiol. 595:4857–73. DOI: 10.1113/JP273907. PMID: 28481416. PMCID: PMC5509865.
35. Mouser JG, Dankel SJ, Jessee MB, et al. 2017; A tale of three cuffs: the hemodynamics of blood flow restriction. Eur J Appl Physiol. 117:1493–9. DOI: 10.1007/s00421-017-3644-7. PMID: 28501908.
36. Okuno NM, Pedro RE, Leicht AS, de Paula Ramos S, Nakamura FY. 2014; Cardiac autonomic recovery after a single session of resistance exercise with and without vascular occlusion. J Strength Cond Res. 28:1143–50. DOI: 10.1519/JSC.0000000000000245. PMID: 24077384.
37. Neto GR, da Silva JC, Freitas L, et al. 2019; Effects of strength training with continuous or intermittent blood flow restriction on the hypertrophy, muscular strength and endurance of men. Acta Scientiarum Health Sci. 41:42273. DOI: 10.4025/actascihealthsci.v41i1.42273.
38. Manini TM, Clark BC. 2009; Blood flow restricted exercise and skeletal muscle health. Exerc Sport Sci Rev. 37:78–85. DOI: 10.1097/JES.0b013e31819c2e5c. PMID: 19305199.
39. Patterson SD, Ferguson RA. 2010; Increase in calf post-occlusive blood flow and strength following short-term resistance exercise training with blood flow restriction in young women. Eur J Appl Physiol. 108:1025–33. DOI: 10.1007/s00421-009-1309-x. PMID: 20012448.
40. Clark BC, Manini TM, Hoffman RL, et al. 2011; Relative safety of 4 weeks of blood flow-restricted resistance exercise in young, healthy adults. Scand J Med Sci Sports. 21:653–62. DOI: 10.1111/j.1600-0838.2010.01100.x. PMID: 21917016. PMCID: PMC6152804.
41. Takano H, Morita T, Iida H, et al. 2005; Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur J Appl Physiol. 95:65–73. DOI: 10.1007/s00421-005-1389-1. PMID: 15959798.
42. Tennent DJ, Hylden CM, Johnson AE, Burns TC, Wilken JM, Owens JG. 2017; Blood flow restriction training after knee arthroscopy: a randomized controlled pilot study. Clin J Sport Med. 27:245–52. DOI: 10.1097/JSM.0000000000000377. PMID: 27749358.
43. Madarame H, Kurano M, Fukumura K, Fukuda T, Nakajima T. 2013; Haemostatic and inflammatory responses to blood flow-restricted exercise in patients with ischaemic heart disease: a pilot study. Clin Physiol Funct Imaging. 33:11–7. DOI: 10.1111/j.1475-097X.2012.01158.x. PMID: 23216760.
44. de Queiros VS, Dantas M, Neto GR, et al. 2021; Application and side effects of blood flow restriction technique: a cross-sectional questionnaire survey of professionals. Medicine (Baltimore). 100:e25794. DOI: 10.1097/MD.0000000000025794. PMID: 33950976. PMCID: PMC8104249.
45. Hollander DB, Reeves GV, Clavier JD, Francois MR, Thomas C, Kraemer RR. 2010; Partial occlusion during resistance exercise alters effort sense and pain. J Strength Cond Res. 24:235–43. DOI: 10.1519/JSC.0b013e3181c7badf. PMID: 19935100.
46. Hughes L, Paton B, Haddad F, Rosenblatt B, Gissane C, Patterson SD. 2018; Comparison of the acute perceptual and blood pressure response to heavy load and light load blood flow restriction resistance exercise in anterior cruciate ligament reconstruction patients and non-injured populations. Phys Ther Sport. 33:54–61. DOI: 10.1016/j.ptsp.2018.07.002. PMID: 30014968.
47. Martín-Hernández J, Ruiz-Aguado J, Herrero AJ, et al. 2017; Adaptation of perceptual responses to low-load blood flow restriction training. J Strength Cond Res. 31:765–72. DOI: 10.1519/JSC.0000000000001478. PMID: 27191690.
48. Scott BR, Loenneke JP, Slattery KM, Dascombe BJ. 2015; Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development. Sports Med. 45:313–25. DOI: 10.1007/s40279-014-0288-1. PMID: 25430600.
Full Text Links
  • KJSM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr