3. Lee D, Yoon SN. Application of artificial intelligence-based technologies in the healthcare industry: opportunities and challenges. Int J Environ Res Public Health. 2021; 18(1):271.
https://doi.org/10.3390/ijerph18010271.
Article
7. Qureshi R, Shaughnessy D, Gill KA, Robinson KA, Li T, Agai E. Are ChatGPT and large language models “the answer” to bringing us closer to systematic review automation? Syst Rev. 2023; 12(1):72.
https://doi.org/10.1186/s13643-023-02243-z.
Article
8. Zhou Y, Liu H, Srivastava T, Mei H, Tan C. Hypothesis generation with large language model [Internet]. Ithaca (NY): arXiv.org;2024. [cited at 2024 Jul 20]. Available from:
https://arxiv.org/abs/2404.04326.
15. Bender EM, Gebru T, McMillan-Major A, Shmitchell S. On the dangers of stochastic parrots: can language models be too big? In : Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency; 2021 Mar 3–10; Virtual Event, Canada. p. 610–623.
https://doi.org/10.1145/3442188.3445922.
Article
16. Vollmer S, Mateen BA, Bohner G, Kiraly FJ, Ghani R, Jonsson P, et al. Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness. BMJ. 2020; 368:l6927.
https://doi.org/10.1136/bmj.l6927.
Article