2. Zhang P, Xu F. Effect of AI deep learning techniques on possible complications and clinical nursing quality of patients with coronary heart disease. Food Sci Technol. 2022; 42:e42020.
https://doi.org/10.1590/fst.42020.
Article
3. Elwahsh H, El-Shafeiy E, Alanazi S, Tawfeek MA. A new smart healthcare framework for real-time heart disease detection based on deep and machine learning. PeerJ Comput Sci. 2021; 7:e646.
https://doi.org/10.7717/peerjcs.646.
Article
4. Al-Alshaikh HA, PP , Poonia RC, Saudagar AKJ, Yadav M, AlSagri HS, et al. Comprehensive evaluation and performance analysis of machine learning in heart disease prediction. Sci Rep. 2024; 14(1):7819.
https://doi.org/10.1038/s41598-024-58489-7.
Article
5. Kanagarathinam K, Sankaran D, Manikandan R. Machine learning-based risk prediction model for cardiovascular disease using a hybrid dataset. Data Knowl Eng. 2022; 140:102042.
https://doi.org/10.1016/j.datak.2022.102042.
10. Montesinos-Lopez OA, Carter AH, Bernal-Sandoval DA, Cano-Paez B, Montesinos-Lopez A, Crossa J. A comparison between three tuning strategies for gaussian kernels in the context of univariate genomic prediction. Genes (Basel). 2022; 13(12):2282.
https://doi.org/10.3390/genes13122282.
Article
14. Lankford S, Grimes D. Neural architecture search using particle swarm and ant colony optimization [Internet]. Ithaca (NY): arXiv.org;2024. [cited at 2024 Jul 30]. Available from:
http://arxiv.org/pdf/2403.03781.
15. Tayebi M, El Kafhali S. Hyperparameter optimization using genetic algorithms to detect frauds transactions. In : Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2021); Cham, Switzerland: Springer;2021; p. 288–97.
https://doi.org/10.1007/978-3-030-76346-6_27.
Article
16. Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data. 2021; 8(1):53.
https://doi.org/10.1186/s40537-021-00444-8.
Article
17. Kong Y, Wang X, Cheng Y, Chen CL. Multi-stage convolutional broad learning with block diagonal constraint for hyperspectral image classification. Remote Sens. 2021; 13(17):3412.
https://doi.org/10.3390/rs13173412.
Article
23. Hassan D, Hussein HI, Hassan MM. Heart disease prediction based on pre-trained deep neural networks combined with principal component analysis. Biomed Signal Proc Contr. 2023; 79(Part 1):104019.
https://doi.org/10.1016/j.bspc.2022.104019.
Article
25. Narisetty N, Kalidindi A, Bujaranpally MV, Arigela N, Ch VV. Ameliorating heart diseases prediction using machine learning technique for optimal solution. Int J Online Biomed Eng (iJOE). 2023; 19(16):156–65.
https://doi.org/10.3991/ijoe.v19i16.42071.
Article
26. El-Ibrahimi A, Terrada O, El Gannour O, Cherradi B, El-Abbassi A, Bouattane O. Optimizing machine learning algorithms for heart disease classification and prediction. Int J Online Biomed Eng (iJOE). 2023; 19(15):61–76.
https://doi.org/10.3991/ijoe.v19i15.42653.
Article
27. Najafi A, Nemati A, Ashrafzadeh M, Zolfani SH. Multiple-criteria decision making, feature selection, and deep learning: a golden triangle for heart disease identification. Eng Appl Artif Intell. 2023; 125:106662.
https://doi.org/10.1016/j.engappai.2023.106662.
Article