2. Park MS, Kim HY, Lee JJ, Cho D, Jung CW, Kim HJ, et al. 2023; The first case of acute myeloid leukemia with t(10;11)(p13;q21);PICALM-MLLT10 rearrangement presenting with extensive skin involvement. Ann Lab Med. 43:310–4. DOI:
10.3343/alm.2023.43.3.310. PMID:
36544346. PMCID:
PMC9791006.
Article
4. Braggio E, Egan JB, Fonseca R, Stewart AK. 2013; Lessons from next-generation sequencing analysis in hematological malignancies. Blood Cancer J. 3:e127. DOI:
10.1038/bcj.2013.26. PMID:
23872706. PMCID:
PMC3730204.
Article
6. He J, Abdel-Wahab O, Nahas MK, Wang K, Rampal RK, Intlekofer AM, et al. 2016; Integrated genomic DNA/RNA profiling of hematologic malignancies in the clinical setting. Blood. 127:3004–14. DOI:
10.1182/blood-2015-08-664649. PMID:
26966091. PMCID:
PMC4968346.
Article
7. Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, et al. 2018; Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol. 36:338–45. DOI:
10.1038/nbt.4060. PMID:
29431738. PMCID:
PMC5889714.
Article
8. Feuk L, Carson AR, Scherer SW. 2006; Structural variation in the human genome. Nat Rev Genet. 7:85–97. DOI:
10.1038/nrg1767. PMID:
16418744.
Article
9. Lam ET, Hastie A, Lin C, Ehrlich D, Das SK, Austin MD, et al. 2012; Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat Biotechnol. 30:771–6. DOI:
10.1038/nbt.2303. PMID:
22797562. PMCID:
PMC3817024.
Article
11. Cao H, Hastie AR, Cao D, Lam ET, Sun Y, Huang H, et al. 2014; Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology. Gigascience. 3:34. DOI:
10.1186/2047-217X-3-34. PMID:
25671094. PMCID:
PMC4322599.
Article
12. Chan S, Lam E, Saghbini M, Bocklandt S, Hastie A, Cao H, et al. 2018; Structural variation detection and analysis using Bionano optical mapping. Methods Mol Biol. 1833:193–203. DOI:
10.1007/978-1-4939-8666-8_16. PMID:
30039375.
Article
13. Neveling K, Mantere T, Vermeulen S, Oorsprong M, van Beek R, Kater-Baats E, et al. 2021; Next-generation cytogenetics: comprehensive assessment of 52 hematological malignancy genomes by optical genome mapping. Am J Hum Genet. 108:1423–35. DOI:
10.1016/j.ajhg.2021.06.001. PMID:
34237281. PMCID:
PMC8387283.
Article
14. Rack K, De Bie J, Ameye G, Gielen O, Demeyer S, Cools J, et al. 2022; Optimizing the diagnostic workflow for acute lymphoblastic leukemia by optical genome mapping. Am J Hematol. 97:548–61. DOI:
10.1002/ajh.26487. PMID:
35119131. PMCID:
PMC9314940.
Article
15. Gerding WM, Tembrink M, Nilius-Eliliwi V, Mika T, Dimopoulos F, Ladigan-Badura S, et al. 2022; Optical genome mapping reveals additional prognostic information compared to conventional cytogenetics in AML/MDS patients. Int J Cancer. 150:1998–2011. DOI:
10.1002/ijc.33942. PMID:
35064925.
Article
18. Lestringant V, Duployez N, Penther D, Luquet I, Derrieux C, Lutun A, et al. 2021; Optical genome mapping, a promising alternative to gold standard cytogenetic approaches in a series of acute lymphoblastic leukemias. Genes Chromosomes Cancer. 60:657–67. DOI:
10.1002/gcc.22971. PMID:
33982372.
Article
19. Sahajpal NS, Mondal AK, Tvrdik T, Hauenstein J, Shi H, Deeb KK, et al. 2022; Clinical validation and diagnostic utility of optical genome mapping for enhanced cytogenomic analysis of hematological neoplasms. J Mol Diagn. 24:1279–91. DOI:
10.1016/j.jmoldx.2022.09.009. PMID:
36265723.
21. Yang H, Garcia-Manero G, Sasaki K, Montalban-Bravo G, Tang Z, Wei Y, et al. 2022; High-resolution structural variant profiling of myelodysplastic syndromes by optical genome mapping uncovers cryptic aberrations of prognostic and therapeutic significance. Leukemia. 36:2306–16. DOI:
10.1038/s41375-022-01652-8. PMID:
35915143. PMCID:
PMC9417987.
Article
22. Shaffer LG, McGowan-Jordan J, Schmid M, editors. 2013. ISCN 2013: an international system for human cytogenetic nomenclature (2013). Karger Medical and Scientific Publishers;Basel: DOI:
10.1002/ajmg.a.35995.
23. Kim B, Kim E, Lee ST, Cheong JW, Lyu CJ, Min YH, et al. 2020; Detection of recurrent, rare, and novel gene fusions in patients with acute leukemia using next-generation sequencing approaches. Hematol Oncol. 38:82–8. DOI:
10.1002/hon.2709. PMID:
31875988.
Article
24. Kim B, Lee H, Shin S, Lee ST, Choi JR. 2019; Clinical evaluation of massively parallel RNA sequencing for detecting recurrent gene fusions in hematologic malignancies. J Mol Diagn. 21:163–70. DOI:
10.1016/j.jmoldx.2018.09.002. PMID:
30347268.
Article
25. Kim B, Lee H, Kim E, Shin S, Lee ST, Choi JR. 2019; Clinical utility of targeted NGS panel with comprehensive bioinformatics analysis for patients with acute lymphoblastic leukemia. Leuk Lymphoma. 60:3138–45. DOI:
10.1080/10428194.2019.1627538. PMID:
31203682.
Article
27. Plagnol V, Curtis J, Epstein M, Mok KY, Stebbings E, Grigoriadou S, et al. 2012; A robust model for read count data in exome sequencing experiments and implications for copy number variant calling. Bioinformatics. 28:2747–54. DOI:
10.1093/bioinformatics/bts526. PMID:
22942019. PMCID:
PMC3476336.
Article
28. Kim H, Shim Y, Lee TG, Won D, Choi JR, Shin S, et al. 2023; Copy-number analysis by base-level normalization: An intuitive visualization tool for evaluating copy number variations. Clin Genet. 103:35–44. DOI:
10.1111/cge.14236. PMID:
36152294.
Article
29. Kuilman T, Velds A, Kemper K, Ranzani M, Bombardelli L, Hoogstraat M, et al. 2015; CopywriteR: DNA copy number detection from off-target sequence data. Genome Biol. 16:49. DOI:
10.1186/s13059-015-0617-1. PMID:
25887352. PMCID:
PMC4396974.
Article
31. Wang Y, Li J, Xue TL, Tian S, Yue ZX, Liu SG, et al. 2023; Clinical, biological, and outcome features of P2RY8-CRLF2 and CRLF2 over-expression in pediatric B-cell precursor acute lymphoblastic leukemia according to the CCLG-ALL 2008 and 2018 protocol. Eur J Haematol. 110:669–79. DOI:
10.1111/ejh.13948. PMID:
36814093.
32. Palmi C, Vendramini E, Silvestri D, Longinotti G, Frison D, Cario G, et al. 2012; Poor prognosis for P2RY8-CRLF2 fusion but not for CRLF2 over-expression in children with intermediate risk B-cell precursor acute lymphoblastic leukemia. Leukemia. 26:2245–53. DOI:
10.1038/leu.2012.101. PMID:
22484421.
Article
33. Cario G, Zimmermann M, Romey R, Gesk S, Vater I, Harbott J, et al. 2010; Presence of the P2RY8-CRLF2 rearrangement is associated with a poor prognosis in non-high-risk precursor B-cell acute lymphoblastic leukemia in children treated according to the ALL-BFM 2000 protocol. Blood. 115:5393–7. DOI:
10.1182/blood-2009-11-256131. PMID:
20378752.
Article
35. Hirabayashi S, Ohki K, Nakabayashi K, Ichikawa H, Momozawa Y, Okamura K, et al. 2017; ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype. Haematologica. 102:118–29. DOI:
10.3324/haematol.2016.151035. PMID:
27634205. PMCID:
PMC5210242.