1. Lee YA, Jung HW, Kim HY, Choi H, Kim HY, Hah JH, et al. 2015; Pediatric patients with multifocal papillary thyroid cancer have higher recurrence rates than adult patients: a retrospective analysis of a large pediatric thyroid cancer cohort over 33 years. J Clin Endocrinol Metab. 100(4):1619–29. DOI:
10.1210/jc.2014-3647. PMID:
25632969.
Article
2. Redlich A, Luster M, Lorenz K, Lessel L, Rohrer TR, Schmid KW, et al. 2022; Age, American Thyroid Association risk group, and response to therapy are prognostic factors in children with differentiated thyroid cancer. J Clin Endocrinol Metab. 107(1):e165–e77. DOI:
10.1210/clinem/dgab622. PMID:
34415989.
Article
3. Rangel-Pozzo A, Sisdelli L, Cordioli MIV, Vaisman F, Caria P, Mai S, et al. 2020; Genetic landscape of papillary thyroid carcinoma and nuclear architecture: an overview comparing pediatric and adult populations. Cancers (Basel). 12(11):3146. DOI:
10.3390/cancers12113146. PMID:
33120984. PMCID:
PMC7693829.
Article
4. Lee YA, Im SW, Jung KC, Chung EJ, Shin CH, Kim JI, et al. 2020; Predominant DICER1 pathogenic variants in pediatric follicular thyroid carcinomas. Thyroid. 30(8):1120–31. DOI:
10.1089/thy.2019.0233. PMID:
32228164.
Article
5. van de Berg DJ, Kuijpers AMJ, Engelsman AF, Drukker CA, van Santen HM, Terwisscha van Scheltinga S, et al. 2022; Long-term oncological outcomes of papillary thyroid cancer and follicular thyroid cancer in children: a nationwide population- based study. Front Endocrinol (Lausanne). 13:899506. DOI:
10.3389/fendo.2022.899506. PMID:
35600573. PMCID:
PMC9114695.
6. Stack BC Jr, Twining C, Rastatter J, Angelos P, Baloch Z, Diercks G, et al. 2021; Consensus statement by the American Association of Clinical Endocrinology (AACE) and the American Head and Neck Society Endocrine Surgery Section (AHNS-ES) on pediatric benign and malignant thyroid surgery. Head Neck. 43(4):1027–42. DOI:
10.1002/hed.26586. PMID:
33386657.
Article
7. Peiling Yang S, Ngeow J. 2016; Familial non-medullary thyroid cancer: unraveling the genetic maze. Endocr Relat Cancer. 23(12):R577–R95. DOI:
10.1530/ERC-16-0067. PMID:
27807061.
Article
8. Schultz KAP, Williams GM, Kamihara J, Stewart DR, Harris AK, Bauer AJ, et al. 2018; DICER1 and associated conditions: identification of at-risk individuals and recommended surveillance strategies. Clin Cancer Res. 24(10):2251–61. DOI:
10.1158/1078-0432.CCR-17-3089. PMID:
29343557. PMCID:
PMC6260592.
9. Jonker LA, Lebbink CA, Jongmans MCJ, Nievelstein RAJ, Merks JHM, Nieveen van Dijkum EJM, et al. 2020; Recommendations on surveillance for differentiated thyroid carcinoma in children with PTEN hamartoma tumor syndrome. Eur Thyroid J. 9(5):234–42. DOI:
10.1159/000508872. PMID:
33088791. PMCID:
PMC7548843.
Article
10. Tischkowitz M, Colas C, Pouwels S, Hoogerbrugge N. PHTS Guideline Development Group; European Reference Network GENTURIS. 2020; Cancer surveillance guideline for individuals with PTEN hamartoma tumour syndrome. Eur J Hum Genet. 28(10):1387–93. DOI:
10.1038/s41431-020-0651-7. PMID:
32533092. PMCID:
PMC7608293.
Article
12. Geurts JL, Strong EA, Wang TS, Evans DB, Clarke CN. 2020; Screening guidelines and recommendations for patients at high risk of developing endocrine cancers. J Surg Oncol. 121(6):975–83. DOI:
10.1002/jso.25869. PMID:
32090344.
Article
13. Francis GL, Waguespack SG, Bauer AJ, Angelos P, Benvenga S, Cerutti JM, et al. 2015; Management guidelines for children with thyroid nodules and differentiated thyroid cancer. Thyroid. 25(7):716–59. DOI:
10.1089/thy.2014.0460. PMID:
25900731. PMCID:
PMC4854274.
Article
14. Howard SR, Freeston S, Harrison B, Izatt L, Natu S, Newbold K, et al. 2022; Paediatric differentiated thyroid carcinoma: a UK national clinical practice consensus guideline. Endocr Relat Cancer. 29(11):G1–G33. DOI:
10.1530/ERC-22-0035. PMID:
35900783. PMCID:
PMC9513650.
Article
15. Lebbink CA, Links TP, Czarniecka A, Dias RP, Elisei R, Izatt L, et al. 2022; 2022 European Thyroid Association guidelines for the management of pediatric thyroid nodules and differentiated thyroid carcinoma. Eur Thyroid J. 11(6):e220146. DOI:
10.1530/ETJ-22-0146. PMID:
36228315. PMCID:
PMC9716393.
Article
16. Bae JS, Jung SH, Hirokawa M, Bychkov A, Miyauchi A, Lee S, et al. 2021; High prevalence of DICER1 mutations and low frequency of gene fusions in pediatric follicular-patterned tumors of the thyroid. Endocr Pathol. 32(3):336–46. DOI:
10.1007/s12022-021-09688-9. PMID:
34313965.
Article
17. Martucci C, Crocoli A, De Pasquale MD, Spinelli C, Strambi S, Brazzarola P, et al. 2022; Thyroid cancer in children: a multicenter international study highlighting clinical features and surgical outcomes of primary and secondary tumors. Front Pediatr. 10:914942. DOI:
10.3389/fped.2022.914942. PMID:
35935364. PMCID:
PMC9354958.
Article
18. Clement SC, Lebbink CA, Klein Hesselink MS, Teepen JC, Links TP, Ronckers CM, et al. 2020; Presentation and outcome of subsequent thyroid cancer among childhood cancer survivors compared to sporadic thyroid cancer: a matched national study. Eur J Endocrinol. 183(2):169–80. DOI:
10.1530/EJE-20-0153. PMID:
32449692.
Article
19. van Santen HM, Alexander EK, Rivkees SA, Frey E, Clement SC, Dierselhuis MP, et al. 2020; Clinical considerations for the treatment of secondary differentiated thyroid carcinoma in childhood cancer survivors. Eur J Endocrinol. 183(3):P1–P10. DOI:
10.1530/EJE-20-0237. PMID:
32508309.
Article
21. Dietz AC, Chen Y, Yasui Y, Ness KK, Hagood JS, Chow EJ, et al. 2016; Risk and impact of pulmonary complications in survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. Cancer. 122(23):3687–96. DOI:
10.1002/cncr.30200. PMID:
27504874. PMCID:
PMC5115933.
Article
22. van Dorp W, Mulder RL, Kremer LC, Hudson MM, van den Heuvel-Eibrink MM, van den Berg MH, et al. 2016; Recommendations for premature ovarian insufficiency surveillance for female survivors of childhood, adolescent, and young adult cancer: a report from the international late effects of childhood cancer guideline harmonization group in collaboration with the PanCareSurFup consortium. J Clin Oncol. 34(28):3440–50. DOI:
10.1200/JCO.2015.64.3288. PMID:
27458300. PMCID:
PMC5569686.
Article
23. Skinner R, Mulder RL, Kremer LC, Hudson MM, Constine LS, Bardi E, et al. 2017; Recommendations for gonadotoxicity surveillance in male childhood, adolescent, and young adult cancer survivors: a report from the international late effects of childhood cancer guideline harmonization group in collaboration with the PanCareSurFup consortium. Lancet Oncol. 18(2):e75–e90. DOI:
10.1016/S1470-2045(17)30026-8. PMID:
28214419.
Article
24. Turcotte LM, Neglia JP, Reulen RC, Ronckers CM, van Leeuwen FE, Morton LM, et al. 2018; Risk, risk factors, and surveillance of subsequent malignant neoplasms in survivors of childhood cancer: a review. J Clin Oncol. 36(21):2145–52. DOI:
10.1200/JCO.2017.76.7764. PMID:
29874133. PMCID:
PMC6075849.
Article
25. Pasqual E, Schonfeld S, Morton LM, Villoing D, Lee C, Berrington de Gonzalez A, et al. 2022; Association between radioactive iodine treatment for pediatric and young adulthood differentiated thyroid cancer and risk of second primary malignancies. J Clin Oncol. 40(13):1439–49. DOI:
10.1200/JCO.21.01841. PMID:
35044839. PMCID:
PMC9061144.
Article
26. Machens A, Elwerr M, Schneider R, Lorenz K, Dralle H. 2018; Disease impacts more than age on operative morbidity in children with Graves' disease after total thyroidectomy. Surgery. 164(5):993–7. DOI:
10.1016/j.surg.2018.07.021. PMID:
30174139.
Article
27. Bal CS, Garg A, Chopra S, Ballal S, Soundararajan R. Prognostic factors in pediatric differentiated thyroid cancer patients with pulmonary metastases. J Pediatr Endocrinol Metab. 2015; 28(7-8):745–51. DOI:
10.1515/jpem-2014-0247. PMID:
25210762.
Article
28. Sugino K, Nagahama M, Kitagawa W, Shibuya H, Ohkuwa K, Uruno T, et al. 2015; Papillary thyroid carcinoma in children and adolescents: long-term follow-up and clinical characteristics. World J Surg. 39(9):2259–65. DOI:
10.1007/s00268-015-3042-4. PMID:
25802237.
Article
29. Qu N, Zhang L, Lu ZW, Ji QH, Yang SW, Wei WJ, et al. 2016; Predictive factors for recurrence of differentiated thyroid cancer in patients under 21 years of age and a meta-analysis of the current literature. Tumour Biol. 37(6):7797–808. DOI:
10.1007/s13277-015-4532-6. PMID:
26695148.
30. Sugino K, Nagahama M, Kitagawa W, Ohkuwa K, Uruno T, Matsuzu K, et al. 2020; Risk stratification of pediatric patients with differentiated thyroid cancer: is total thyroidectomy necessary for patients at any risk? Thyroid. 30(4):548–56. DOI:
10.1089/thy.2019.0231. PMID:
31910105.
Article
31. Rubinstein JC, Dinauer C, Herrick-Reynolds K, Morotti R, Callender GG, Christison-Lagay ER. 2019; Lymph node ratio predicts recurrence in pediatric papillary thyroid cancer. J Pediatr Surg. 54(1):129–32. DOI:
10.1016/j.jpedsurg.2018.10.010. PMID:
30361076.
Article
32. Olmsted C, Arunachalam R, Gao X, Pesce L, Lal G. 2017; Pediatric differentiated thyroid carcinoma: trends in practice and outcomes over 40 years at a single tertiary care institution. J Pediatr Endocrinol Metab. 30(10):1067–74. DOI:
10.1515/jpem-2016-0327. PMID:
28902626.
Article
33. Baumgarten HD, Bauer AJ, Isaza A, Mostoufi-Moab S, Kazahaya K, Adzick NS. 2019; Surgical management of pediatric thyroid disease: complication rates after thyroidectomy at the Children's Hospital of Philadelphia high-volume Pediatric Thyroid Center. J Pediatr Surg. 54(10):1969–75. DOI:
10.1016/j.jpedsurg.2019.02.009. PMID:
30902456.
Article
34. Spinelli C, Tognetti F, Strambi S, Morganti R, Massimino M, Collini P. 2018; Cervical lymph node metastases of papillary thyroid carcinoma, in the central and lateral compartments, in children and adolescents: predictive factors. World J Surg. 42(8):2444–53. DOI:
10.1007/s00268-018-4487-z. PMID:
29383423.
Article
35. Propst EJ, Wasserman JD, Gorodensky J, Ngan BY, Wolter NE. 2021; Patterns and predictors of metastatic spread to the neck in pediatric thyroid carcinoma. Laryngoscope. 131(3):E1002–E9. DOI:
10.1002/lary.28937.
Article
36. Tuggle CT, Roman SA, Wang TS, Boudourakis L, Thomas DC, Udelsman R, et al. 2008; Pediatric endocrine surgery: who is operating on our children? Surgery. 144(6):869–77. discussion 77DOI:
10.1016/j.surg.2008.08.033. PMID:
19040991.
Article
37. Kao KT, Ferguson EC, Blair G, Chadha NK, Chanoine JP. 2021; Risk factors for the development of hypocalcemia in pediatric patients after total thyroidectomy - a systematic review. Int J Pediatr Otorhinolaryngol. 143:110666. DOI:
10.1016/j.ijporl.2021.110666. PMID:
33706109.
Article
38. Lorenz K, Raffaeli M, Barczynski M, Lorente-Poch L, Sancho J. 2020; Volume, outcomes, and quality standards in thyroid surgery: an evidence-based analysis-European Society of Endocrine Surgeons (ESES) positional statement. Langenbecks Arch Surg. 405(4):401–25. DOI:
10.1007/s00423-020-01907-x. PMID:
32524467. PMCID:
PMC8275525.
Article
39. Back K, Kim TH, Lee J, Kim JS, Choe JH, Oh YL, et al. 2023; Optimal value of lymph node ratio and metastatic lymph node size to predict risk of recurrence in pediatric thyroid cancer with lateral neck metastasis. J Pediatr Surg. 58(3):568–73. DOI:
10.1016/j.jpedsurg.2022.07.010. PMID:
35973863.
Article
40. Gui Y, Huang D, Hou Y, Wei X, Zhang J, Wang J. 2022; Predictive factors for recurrence of papillary thyroid carcinoma in children and adolescents. Front Oncol. 12:833775. DOI:
10.3389/fonc.2022.833775. PMID:
35280803. PMCID:
PMC8909140.
Article
41. Zanella A, Scheffel RS, Pasa MW, Dora JM, Maia AL. 2017; Role of postoperative stimulated thyroglobulin as prognostic factor for differentiated thyroid cancer in children and adolescents. Thyroid. 27(6):787–92. DOI:
10.1089/thy.2016.0559. PMID:
28292215.
Article
42. Karapanou O, Tzanela M, Rondogianni P, Dacou-Voutetakis C, Chiotis D, Vlassopoulou B, et al. 2020; Long-term outcome of differentiated thyroid cancer in children and young adults: risk stratification by ATA criteria and assessment of pre-ablation stimulated thyroglobulin as predictors of disease persistence. Endocrine. 70(3):566–74. DOI:
10.1007/s12020-020-02378-2. PMID:
32533509.
Article
43. Lazar L, Lebenthal Y, Segal K, Steinmetz A, Strenov Y, Cohen M, et al. 2016; Pediatric thyroid cancer: postoperative classifications and response to initial therapy as prognostic factors. J Clin Endocrinol Metab. 101(5):1970–9. DOI:
10.1210/jc.2015-3960. PMID:
26930182.
Article
44. Pires BP, Alves PA Jr, Bordallo MA, Bulzico DA, Lopes FP, Farias T, et al. 2016; Prognostic factors for early and long-term remission in pediatric differentiated thyroid carcinoma: the role of sex, age, clinical presentation, and the newly proposed American Thyroid Association risk stratification system. Thyroid. 26(10):1480–7. DOI:
10.1089/thy.2016.0302. PMID:
27540892.
Article
45. Sung TY, Jeon MJ, Lee YH, Lee YM, Kwon H, Yoon JH, et al. 2017; Initial and dynamic risk stratification of pediatric patients with differentiated thyroid cancer. J Clin Endocrinol Metab. 102(3):793–800.
Article
46. Zanella AB, Scheffel RS, Nava CF, Golbert L, Laurini de Souza Meyer E, Punales M, et al. 2018; Dynamic risk stratification in the follow-up of children and adolescents with differentiated thyroid cancer. Thyroid. 28(10):1285–92. DOI:
10.1089/thy.2018.0075. PMID:
30129889.
Article
47. Majeed AK, Satapathy S, Ballal S, Bal C. 2023; Dynamic risk stratification for predicting long-term outcomes in pediatric differentiated thyroid cancers. J Clin Endocrinol Metab. 108(6):e208–e15. DOI:
10.1210/clinem/dgac731. PMID:
36577747.
Article
48. Padovani RP, Robenshtok E, Brokhin M, Tuttle RM. 2012; Even without additional therapy, serum thyroglobulin concentrations often decline for years after total thyroidectomy and radioactive remnant ablation in patients with differentiated thyroid cancer. Thyroid. 22(8):778–83. DOI:
10.1089/thy.2011.0522. PMID:
22780333.
Article
49. Dekker BL, Muller Kobold AC, Brouwers AH, Williams GR, Nies M, Klein Hesselink MS, et al. 2021; Bone mineral density in adult survivors of pediatric differentiated thyroid carcinoma: a longitudinal follow-up study. Thyroid. 31(11):1707–14. DOI:
10.1089/thy.2021.0179. PMID:
34514857.
Article
50. Chow SM, Law SC, Mendenhall WM, Au SK, Yau S, Mang O, et al. 2004; Differentiated thyroid carcinoma in childhood and adolescence-clinical course and role of radioiodine. Pediatr Blood Cancer. 42(2):176–83. DOI:
10.1002/pbc.10410. PMID:
14752883.
Article
51. Jarzab B, Handkiewicz-Junak D, Wloch J. 2005; Juvenile differentiated thyroid carcinoma and the role of radioiodine in its treatment: a qualitative review. Endocr Relat Cancer. 12(4):773–803. DOI:
10.1677/erc.1.00880. PMID:
16322322.
Article
52. Handkiewicz-Junak D, Wloch J, Roskosz J, Krajewska J, Kropinska A, Pomorski L, et al. 2007; Total thyroidectomy and adjuvant radioiodine treatment independently decrease locoregional recurrence risk in childhood and adolescent differentiated thyroid cancer. J Nucl Med. 48(6):879–88. DOI:
10.2967/jnumed.106.035535. PMID:
17536106.
Article
53. Newman KD, Black T, Heller G, Azizkhan RG, Holcomb GW 3rd, Sklar C, et al. 1998; Differentiated thyroid cancer: determinants of disease progression in patients <21 years of age at diagnosis: a report from the Surgical Discipline Committee of the Children's Cancer Group. Ann Surg. 227(4):533–41. DOI:
10.1097/00000658-199804000-00014. PMID:
9563542. PMCID:
PMC1191309.
54. Haymart MR, Muenz DG, Stewart AK, Griggs JJ, Banerjee M. 2013; Disease severity and radioactive iodine use for thyroid cancer. J Clin Endocrinol Metab. 98(2):678–86. DOI:
10.1210/jc.2012-3160. PMID:
23322816. PMCID:
PMC3565122.
Article
56. Reiners C, Biko J, Haenscheid H, Hebestreit H, Kirinjuk S, Baranowski O, et al. 2013; Twenty-five years after Chernobyl: outcome of radioiodine treatment in children and adolescents with very high-risk radiation-induced differentiated thyroid carcinoma. J Clin Endocrinol Metab. 98(7):3039–48. DOI:
10.1210/jc.2013-1059. PMID:
23616148.
Article
57. Verburg FA, Biko J, Diessl S, Demidchik Y, Drozd V, Rivkees SA, et al. 2011; I-131 activities as high as safely administrable (AHASA) for the treatment of children and adolescents with advanced differentiated thyroid cancer. J Clin Endocrinol Metab. 96(8):E1268–71. DOI:
10.1210/jc.2011-0520. PMID:
21613356.
Article
58. Sgouros G, Kolbert KS, Sheikh A, Pentlow KS, Mun EF, Barth A, et al. 2004; Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med. 45(8):1366–72.
59. Jentzen W, Freudenberg L, Eising EG, Sonnenschein W, Knust J, Bockisch A. 2008; Optimized 124I PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J Nucl Med. 49(6):1017–23. DOI:
10.2967/jnumed.107.047159. PMID:
18483099.
Article
60. Pettinato C, Monari F, Nanni C, Allegri V, Marcatili S, Civollani S, et al. 2012; Usefulness of 124I PET/CT imaging to predict absorbed doses in patients affected by metastatic thyroid cancer and treated with 131I. Q J Nucl Med Mol Imaging. 56(6):509–14.
61. Iorcansky S, Herzovich V, Qualey RR, Tuttle RM. 2005; Serum thyrotropin (TSH) levels after recombinant human TSH injections in children and teenagers with papillary thyroid cancer. J Clin Endocrinol Metab. 90(12):6553–5. DOI:
10.1210/jc.2005-1550. PMID:
16174712.
Article
62. Rosario PW, Mineiro Filho AF, Lacerda RX, Calsolari MR. 2012; Recombinant human TSH for thyroid remnant ablation with (131)I in children and adolescents with papillary carcinoma. Horm Res Paediatr. 77(1):59–62. DOI:
10.1159/000335088. PMID:
22236503.
Article
63. Hoe FM, Charron M, Moshang T Jr. 2006; Use of the recombinant human TSH stimulated thyroglobulin level and diagnostic whole body scan in children with differentiated thyroid carcinoma. J Pediatr Endocrinol Metab. 19(1):25–30. DOI:
10.1515/JPEM.2006.19.1.25. PMID:
16509525.
Article
64. Schumm MA, Pyo HQ, Kim J, Tseng CH, Yeh MW, Leung AM, et al. 2021; Recombinant human thyroid-stimulating hormone versus thyroid hormone withdrawal preparation for radioiodine ablation in differentiated thyroid cancer in children, adolescents and young adults. Clin Endocrinol (Oxf). 95(2):344–53. DOI:
10.1111/cen.14457. PMID:
33704813.
Article
65. Hall P, Holm LE, Lundell G, Bjelkengren G, Larsson LG, Lindberg S, et al. 1991; Cancer risks in thyroid cancer patients. Br J Cancer. 64(1):159–63. DOI:
10.1038/bjc.1991.261. PMID:
1854616. PMCID:
PMC1977300.
Article
66. Travis CC, Stabin MG. 2006; 131I ablation treatment in young females after the Chernobyl accident. J Nucl Med. 47(10):1723–7.
67. Seo GH, Kong KA, Kim BS, Kang SY, Moon BS, Yoon HJ, et al. 2021; radioactive iodine treatment for children and young adults with thyroid cancer in South Korea: a population-based study. J Clin Endocrinol Metab. 106(7):e2580–e8. DOI:
10.1210/clinem/dgab192. PMID:
33755732.
Article
68. Canale D, Ceccarelli C, Caglieresi C, Moscatelli A, Gavioli S, Santini P, et al. 2015; Effects of radioiodine treatment for differentiated thyroid cancer on testis function. Clin Endocrinol (Oxf). 82(2):295–9. DOI:
10.1111/cen.12514. PMID:
25138547.
Article
69. Hyer S, Vini L, O'Connell M, Pratt B, Harmer C. 2002; Testicular dose and fertility in men following I(131) therapy for thyroid cancer. Clin Endocrinol (Oxf). 56(6):755–8. DOI:
10.1046/j.1365-2265.2002.t01-1-01545.x. PMID:
12072044.
70. Bourcigaux N, Rubino C, Berthaud I, Toubert ME, Donadille B, Leenhardt L, et al. 2018; Impact on testicular function of a single ablative activity of 3.7 GBq radioactive iodine for differentiated thyroid carcinoma. Hum Reprod. 33(8):1408–16. DOI:
10.1093/humrep/dey222. PMID:
29912343.
Article
72. Sarkar SD, Beierwaltes WH, Gill SP, Cowley BJ. 1976; Subsequent fertility and birth histories of children and adolescents treated with 131I for thyroid cancer. J Nucl Med. 17(6):460–4.
73. Nies M, Arts E, van Velsen EFS, Burgerhof JGM, Muller Kobold AC, Corssmit EPM, et al. 2021; Long-term male fertility after treatment with radioactive iodine for differentiated thyroid carcinoma. Eur J Endocrinol. 185(6):775–82. DOI:
10.1530/EJE-21-0315. PMID:
34582359.
Article
75. Yaish I, Azem F, Gutfeld O, Silman Z, Serebro M, Sharon O, et al. 2018; A single radioactive iodine treatment has a deleterious effect on ovarian reserve in women with thyroid cancer: results of a prospective pilot study. Thyroid. 28(4):522–7. DOI:
10.1089/thy.2017.0442. PMID:
29466932.
Article
76. Acibucu F, Acibucu DO, Akkar OB, Dokmetas HS. 2016; Evaluation of ovarian reserve with AMH level in patients with well-differentiated thyroid cancer receiving radioactive iodine ablation treatment. Exp Clin Endocrinol Diabetes. 124(10):593–6. DOI:
10.1055/s-0042-115639. PMID:
27711957.
Article
77. Giusti M, Mittica M, Comite P, Campana C, Gay S, Mussap M. 2018; Anti-Mullerian hormone in pre-menopausal females after ablative radioiodine treatment for differentiated thyroid cancer. Endocrine. 60(3):516–23. DOI:
10.1007/s12020-017-1510-3. PMID:
29302874.
Article
78. Nies M, Cantineau AEP, Arts E, van den Berg MH, van Leeuwen FE, Muller Kobold AC, et al. 2020; Long-term effects of radioiodine treatment on female fertility in survivors of childhood differentiated thyroid carcinoma. Thyroid. 30(8):1169–76. DOI:
10.1089/thy.2019.0560. PMID:
32079487.
Article
79. Yan L, Zhang Y, Jiang B, Luo Y. 2021; Radiofrequency ablation for cervical metastatic lymph nodes in children and adolescents with papillary thyroid carcinoma: a preliminary study. Front Endocrinol (Lausanne). 12:624054. DOI:
10.3389/fendo.2021.624054. PMID:
34084150. PMCID:
PMC8167037.
Article
80. Pawelczak M, David R, Franklin B, Kessler M, Lam L, Shah B. 2010; Outcomes of children and adolescents with well-differentiated thyroid carcinoma and pulmonary metastases following 131I treatment: a systematic review. Thyroid. 20(10):1095–101. DOI:
10.1089/thy.2009.0446. PMID:
20860418.
Article
81. Nies M, Vassilopoulou-Sellin R, Bassett RL, Yedururi S, Zafereo ME, Cabanillas ME, et al. 2021; Distant metastases from childhood differentiated thyroid carcinoma: clinical course and mutational landscape. J Clin Endocrinol Metab. 106(4):e1683–e97. DOI:
10.1210/clinem/dgaa935. PMID:
33382403. PMCID:
PMC7993569.
Article
82. Hebestreit H, Biko J, Drozd V, Demidchik Y, Burkhardt A, Trusen A, et al. 2011; Pulmonary fibrosis in youth treated with radioiodine for juvenile thyroid cancer and lung metastases after Chernobyl. Eur J Nucl Med Mol Imaging. 38(9):1683–90. DOI:
10.1007/s00259-011-1841-x. PMID:
21626048.
Article
83. Lee YA, Lee H, Im SW, Song YS, Oh DY, Kang HJ, et al. 2021; NTRK and RET fusion-directed therapy in pediatric thyroid cancer yields a tumor response and radioiodine uptake. J Clin Invest. 131(18):e133847. DOI:
10.1172/JCI144847. PMID:
34237031. PMCID:
PMC8439610.
84. Franco AT, Ricarte-Filho JC, Isaza A, Jones Z, Jain N, Mostoufi-Moab S, et al. 2022; Fusion oncogenes are associated with increased metastatic capacity and persistent disease in pediatric thyroid cancers. J Clin Oncol. 40(10):1081–90. DOI:
10.1200/JCO.21.01861. PMID:
35015563. PMCID:
PMC8966969.
Article
85. Papini E, Guglielmi R, Bianchini A, Crescenzi A, Taccogna S, Nardi F, et al. 2002; Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J Clin Endocrinol Metab. 87(5):1941–6. DOI:
10.1210/jcem.87.5.8504. PMID:
11994321.
Article
87. Waguespack SG, Tewari SO, Busaidy NL, Zafereo ME. 2022; Larotrectinib before initial radioactive iodine therapy in pediatric TRK fusion-positive papillary thyroid carcinoma: time to reconsider the treatment paradigm for distantly metastatic disease? JCO Precis Oncol. 6:e2100467. DOI:
10.1200/PO.21.00467. PMID:
35420905. PMCID:
PMC9029926.
Article