Int J Thyroidol.  2024 May;17(1):153-167. 10.11106/ijt.2024.17.1.153.

Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Part III. Management of Advanced Differentiated Thyroid Cancers - Chapter 3. Radioactive Iodine Therapy in Advanced Thyroid Cancer 2024

Affiliations
  • 1Department of Nuclear Medicine, Pusan National University Hospital, Busan, Korea
  • 2Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Korea
  • 3Department of Internal Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
  • 4Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
  • 5Department of Radiology, Gangneung Asan Hospital, Gangneung, Korea
  • 6Department of Nuclear Medicine, National Cancer Center, Goyang, Korea
  • 7Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
  • 8Department of Nuclear Medicine, CHA Bundang Medical Center, Seongnam, Korea
  • 9Department of Nuclear Medicine, Chungnam National University Sejong Hospital, Sejong, Korea
  • 10Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
  • 11Department of Nuclear Medicine, Kyungpook National University Chilgok Hospital, Daegu, Korea
  • 12Department of Internal Medicine, National Cancer Center, Goyang, Korea
  • 13Department of Internal Medicine, Seoul St. Mary’s Hospital, Seoul, Korea
  • 14Department of Nuclear Medicine, Chosun University Hospital, Gwangju, Korea
  • 15Department of Internal Medicine, Chung-Ang University Hospital, Seoul, Korea
  • 16Department of Nucelar Medicine, Seoul National University Boramae Medical Center, Seoul, Korea

Abstract

Radioactive iodine (RAI) therapy can effectively eliminate persistent or recurrent disease in patients with advanced differentiated thyroid cancer (DTC), potentially improving progression-free, disease-specific, and overall survival rates. Repeated administration of RAI along with thyroid-stimulating hormone (TSH) suppression is the mainstay of treatment for patients with distant metastases. Remarkably, one in three patients with distant metastases can be cured using RAI therapy and experience a near-normal life expectancy. Patients with elevated serum thyroglobulin and a negative post-RAI scan may be considered for empiric RAI therapy in the absence of structurally evident disease. However, in some patients, the iodine uptake capacity of advanced lesions decreases over time, potentially resulting in RAI-refractory disease. RAI-administered dose can be either empirically fixed high activities or dosimetry-based individualized activities for treatment of known diseases. The preparation method (levothyroxine withdrawal vs. recombinant human TSH administration) should be individualized for each patient. RAI therapy is a reasonable and safe treatment for patients with advanced DTC. Despite the risk of radiation exposure, administration of low-activity RAI has not been associated with an increased risk of a secondary primary cancer (SPM), leukemia, infertility, adverse pregnancy outcomes, etc. However, depending on the cumulative dose, there is a risk of acute or delayed-onset adverse effects including salivary gland damage, dental caries, nasolacrimal duct obstruction, and SPM. Therefore, as with any treatment, the expected benefit must justify the use of RAI in patients with advanced DTC.

Keyword

Guideline; Korean Thyroid Association; Persistent disease; Radioactive iodine; Recurrent disease; Recombinant human TSH; Thyroid cancer

Reference

References

1. Avram AM, Giovanella L, Greenspan B, Lawson SA, Luster M, Van Nostrand D, et al. 2022; SNMMI procedure standard/EANM practice guideline for nuclear medicine evaluation and therapy of differentiated thyroid cancer: abbreviated version. J Nucl Med. 63(6):15N–35N.
2. Filetti S, Durante C, Hartl D, Leboulleux S, Locati LD, Newbold K, et al. 2019; Thyroid cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 30(12):1856–83. DOI: 10.1093/annonc/mdz400. PMID: 31549998.
Article
3. Schmidt A, Iglesias L, Klain M, Pitoia F, Schlumberger MJ. 2017; Radioactive iodine-refractory differentiated thyroid cancer: an uncommon but challenging situation. Arch Endocrinol Metab. 61(1):81–9. DOI: 10.1590/2359-3997000000245. PMID: 28225999. PMCID: PMC10522117.
Article
4. Haymart MR, Muenz DG, Stewart AK, Griggs JJ, Banerjee M. 2013; Disease severity and radioactive iodine use for thyroid cancer. J Clin Endocrinol Metab. 98(2):678–86. DOI: 10.1210/jc.2012-3160. PMID: 23322816. PMCID: PMC3565122.
Article
5. Van Nostrand D. 2009; The benefits and risks of I-131 therapy in patients with well-differentiated thyroid cancer. Thyroid. 19(12):1381–91. DOI: 10.1089/thy.2009.1611. PMID: 20001720.
Article
6. Avenia N, Ragusa M, Monacelli M, Calzolari F, Daddi N, Di Carlo L, et al. 2004; Locally advanced thyroid cancer: therapeutic options. Chir Ital. 56(4):501–8.
7. Osorio M, Moubayed SP, Su H, Urken ML. 2017; Systematic review of site distribution of bone metastases in differentiated thyroid cancer. Head Neck. 39(4):812–8. DOI: 10.1002/hed.24655. PMID: 28079945.
Article
8. Ruegemer JJ, Hay ID, Bergstralh EJ, Ryan JJ, Offord KP, Gorman CA. 1988; Distant metastases in differentiated thyroid carcinoma: a multivariate analysis of prognostic variables. J Clin Endocrinol Metab. 67(3):501–8. DOI: 10.1210/jcem-67-3-501. PMID: 3410936.
Article
9. Diessl S, Holzberger B, Mader U, Grelle I, Smit JW, Buck AK, et al. 2012; Impact of moderate vs stringent TSH suppression on survival in advanced differentiated thyroid carcinoma. Clin Endocrinol (Oxf). 76(4):586–92. DOI: 10.1111/j.1365-2265.2011.04272.x. PMID: 22059804.
10. Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli JP, et al. 2006; Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 91(8):2892–9. DOI: 10.1210/jc.2005-2838. PMID: 16684830.
Article
11. Ronga G, Filesi M, Montesano T, Di Nicola AD, Pace C, Travascio L, et al. 2004; Lung metastases from differentiated thyroid carcinoma. A 40 years' experience. Q J Nucl Med Mol Imaging. 48(1):12–9.
12. Ilgan S, Karacalioglu AO, Pabuscu Y, Atac GK, Arslan N, Ozturk E, et al. 2004; Iodine-131 treatment and high-resolution CT: results in patients with lung metastases from differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging. 31(6):825–30. DOI: 10.1007/s00259-004-1460-x. PMID: 14762699.
Article
13. Hod N, Hagag P, Baumer M, Sandbank J, Horne T. 2005; Differentiated thyroid carcinoma in children and young adults: evaluation of response to treatment. Clin Nucl Med. 30(6):387–90. DOI: 10.1097/01.rlu.0000162602.48653.54. PMID: 15891289.
Article
14. Schlumberger M, Challeton C, De Vathaire F, Travagli JP, Gardet P, Lumbroso JD, et al. 1996; Radioactive iodine treatment and external radiotherapy for lung and bone metastases from thyroid carcinoma. J Nucl Med. 37(4):598–605.
15. Bernier MO, Leenhardt L, Hoang C, Aurengo A, Mary JY, Menegaux F, et al. 2001; Survival and therapeutic modalities in patients with bone metastases of differentiated thyroid carcinomas. J Clin Endocrinol Metab. 86(4):1568–73. DOI: 10.1210/jcem.86.4.7390. PMID: 11297585.
Article
16. Kato S, Demura S, Shinmura K, Yokogawa N, Shimizu T, Tsuchiya H. 2021; Current management of bone metastases from differentiated thyroid cancer. Cancers (Basel). 13(17):4429. DOI: 10.3390/cancers13174429. PMID: 34503240. PMCID: PMC8431580.
Article
17. Wexler JA. 2011; Approach to the thyroid cancer patient with bone metastases. J Clin Endocrinol Metab. 96(8):2296–307. DOI: 10.1210/jc.2010-1996. PMID: 21816796.
Article
18. Van Nostrand D, Wartofsky L. 2007; Radioiodine in the treatment of thyroid cancer. Endocrinol Metab Clin North Am. 36(3):807–22. DOI: 10.1016/j.ecl.2007.04.006. PMID: 17673129.
Article
19. Schlumberger M, Lacroix L, Russo D, Filetti S, Bidart JM. 2007; Defects in iodide metabolism in thyroid cancer and implications for the follow-up and treatment of patients. Nat Clin Pract Endocrinol Metab. 3(3):260–9. DOI: 10.1038/ncpendmet0449. PMID: 17315034.
Article
20. Van Nostrand D, Atkins F, Yeganeh F, Acio E, Bursaw R, Wartofsky L. 2002; Dosimetrically determined doses of radioiodine for the treatment of metastatic thyroid carcinoma. Thyroid. 12(2):121–34. DOI: 10.1089/105072502753522356. PMID: 11916281.
Article
21. Chiesa C, Castellani MR, Vellani C, Orunesu E, Negri A, Azzeroni R, et al. 2009; Individualized dosimetry in the management of metastatic differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 53(5):546–61.
22. Maxon HR, Thomas SR, Hertzberg VS, Kereiakes JG, Chen IW, Sperling MI, et al. 1983; Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. N Engl J Med. 309(16):937–41. DOI: 10.1056/NEJM198310203091601. PMID: 6621620.
Article
23. Thomas SR, Maxon HR, Kereiakes JG. 1976; In vivo quantitation of lesion radioactivity using external counting methods. Med Phys. 03(04):253–5. DOI: 10.1118/1.594287. PMID: 958163.
24. Holst JP, Burman KD, Atkins F, Umans JG, Jonklaas J. 2005; Radioiodine therapy for thyroid cancer and hyperthyroidism in patients with end-stage renal disease on hemodialysis. Thyroid. 15(12):1321–31. DOI: 10.1089/thy.2005.15.1321. PMID: 16405403.
Article
25. Driedger AA, Quirk S, McDonald TJ, Ledger S, Gray D, Wall W, et al. 2006; A pragmatic protocol for I-131 rhTSH- stimulated ablation therapy in patients with renal failure. Clin Nucl Med. 31(8):454–7. DOI: 10.1097/01.rlu.0000227013.36421.ce. PMID: 16855429.
26. Jarzab B, Handkiewicz-Junak D, Wloch J. 2005; Juvenile differentiated thyroid carcinoma and the role of radioiodine in its treatment: a qualitative review. Endocr Relat Cancer. 12(4):773–803. DOI: 10.1677/erc.1.00880. PMID: 16322322.
Article
27. Verburg FA, Biko J, Diessl S, Demidchik Y, Drozd V, Rivkees SA, et al. 2011; I-131 activities as high as safely administrable (AHASA) for the treatment of children and adolescents with advanced differentiated thyroid cancer. J Clin Endocrinol Metab. 96(8):E1268–71. DOI: 10.1210/jc.2011-0520. PMID: 21613356.
Article
28. Ma C, Xie J, Liu W, Wang G, Zuo S, Wang X, et al. 2010; Recombinant human thyrotropin (rhTSH) aided radioiodine treatment for residual or metastatic differentiated thyroid cancer. Cochrane Database Syst Rev. 2010(11):CD008302. DOI: 10.1002/14651858.CD008302.
Article
29. Sgouros G, Kolbert KS, Sheikh A, Pentlow KS, Mun EF, Barth A, et al. 2004; Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med. 45(8):1366–72.
30. Jentzen W, Freudenberg L, Eising EG, Sonnenschein W, Knust J, Bockisch A. 2008; Optimized 124I PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J Nucl Med. 49(6):1017–23. DOI: 10.2967/jnumed.107.047159. PMID: 18483099.
Article
31. Pettinato C, Monari F, Nanni C, Allegri V, Marcatili S, Civollani S, et al. 2012; Usefulness of 124I PET/CT imaging to predict absorbed doses in patients affected by metastatic thyroid cancer and treated with 131I. Q J Nucl Med Mol Imaging. 56(6):509–14.
32. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2016; 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 26(1):1–133. DOI: 10.1089/thy.2015.0020. PMID: 26462967. PMCID: PMC4739132.
Article
33. Kulkarni K, Van Nostrand D, Atkins F, Aiken M, Burman K, Wartofsky L. 2006; The relative frequency in which empiric dosages of radioiodine would potentially overtreat or undertreat patients who have metastatic well-differentiated thyroid cancer. Thyroid. 16(10):1019–23. DOI: 10.1089/thy.2006.16.1019. PMID: 17042688.
Article
34. Tuttle RM, Leboeuf R, Robbins RJ, Qualey R, Pentlow K, Larson SM, et al. 2006; Empiric radioactive iodine dosing regimens frequently exceed maximum tolerated activity levels in elderly patients with thyroid cancer. J Nucl Med. 47(10):1587–91.
35. Hugo J, Robenshtok E, Grewal R, Larson S, Tuttle RM. 2012; Recombinant human thyroid stimulating hormone-assisted radioactive iodine remnant ablation in thyroid cancer patients at intermediate to high risk of recurrence. Thyroid. 22(10):1007–15. DOI: 10.1089/thy.2012.0183. PMID: 22873801.
Article
36. Gomes-Lima CJ, Chittimoju S, Wehbeh L, Dia S, Pagadala P, Al-Jundi M, et al. 2022; Metastatic differentiated thyroid cancer survival is unaffected by mode of preparation for (131)I administration. J Endocr Soc. 6(5):bvac032. DOI: 10.1210/jendso/bvac032. PMID: 35356009. PMCID: PMC8962448.
Article
37. Simoes-Pereira J, Ferreira TC, Limbert E, Cavaco BM, Leite V. 2021; Outcomes of thyrotropin alfa versus levothyroxine withdrawal-aided radioiodine therapy for distant metastasis of papillary thyroid cancer. Thyroid. 31(10):1514–22. DOI: 10.1089/thy.2021.0013. PMID: 34155923.
Article
38. Tala H, Robbins R, Fagin JA, Larson SM, Tuttle RM. 2011; Five-year survival is similar in thyroid cancer patients with distant metastases prepared for radioactive iodine therapy with either thyroid hormone withdrawal or recombinant human TSH. J Clin Endocrinol Metab. 96(7):2105–11. DOI: 10.1210/jc.2011-0305. PMID: 21565788. PMCID: PMC7372579.
Article
39. Tsai HC, Ho KC, Chen SH, Tseng JR, Yang LY, Lin KJ, et al. 2022; Feasibility of recombinant human TSH as a preparation for radioiodine therapy in patients with distant metastases from papillary thyroid cancer: comparison of long-term survival outcomes with thyroid hormone withdrawal. Diagnostics (Basel). 12(1):221. DOI: 10.3390/diagnostics12010221. PMID: 35054388. PMCID: PMC8775305.
Article
40. Campopiano MC, Podesta D, Bianchi F, Giani C, Agate L, Bottici V, et al. 2020; No difference in the outcome of metastatic thyroid cancer patients when using recombinant or endogenous TSH. Eur J Endocrinol. 183(4):411–7. DOI: 10.1530/EJE-20-0088. PMID: 32688334.
Article
41. Klubo-Gwiezdzinska J, Burman KD, Van Nostrand D, Mete M, Jonklaas J, Wartofsky L. 2012; Radioiodine treatment of metastatic thyroid cancer: relative efficacy and side effect profile of preparation by thyroid hormone withdrawal versus recombinant human thyrotropin. Thyroid. 22(3):310–7. DOI: 10.1089/thy.2011.0235. PMID: 22313411. PMCID: PMC4162434.
Article
42. Park S, Bang JI, Kim K, Seo Y, Chong A, Hong CM, et al. 2024; Comparison of recombinant human thyroid-stimulating hormone and thyroid hormone withdrawal for 131 I therapy in patients with intermediate- to high-risk thyroid cancer : a systematic review and meta-analysis. Clin Nucl Med. 49(3):e96–e104. DOI: 10.1097/RLU.0000000000005022. PMID: 38271262.
43. Luster M, Lassmann M, Haenscheid H, Michalowski U, Incerti C, Reiners C. 2000; Use of recombinant human thyrotropin before radioiodine therapy in patients with advanced differentiated thyroid carcinoma. J Clin Endocrinol Metab. 85(10):3640–5. DOI: 10.1210/jcem.85.10.6903. PMID: 11061516.
Article
44. Rani D, Kaisar S, Awasare S, Kamaldeep , Abhyankar A, Basu S. 2014; Examining recombinant human TSH primed 131I therapy protocol in patients with metastatic differentiated thyroid carcinoma: comparison with the traditional thyroid hormone withdrawal protocol. Eur J Nucl Med Mol Imaging. 41(9):1767–80. DOI: 10.1007/s00259-014-2737-3. PMID: 24687139.
Article
45. Jarzab B, Handkiewicz-Junak D, Roskosz J, Puch Z, Wygoda Z, Kukulska A, et al. 2003; Recombinant human TSH-aided radioiodine treatment of advanced differentiated thyroid carcinoma: a single-centre study of 54 patients. Eur J Nucl Med Mol Imaging. 30(8):1077–86. DOI: 10.1007/s00259-003-1190-5. PMID: 12783219.
Article
46. Robbins RJ, Driedger A, Magner J. U.S. and Canadian Thyrogen Compassionate Use Program Investigator Group. 2006; Recombinant human thyrotropin-assisted radioiodine therapy for patients with metastatic thyroid cancer who could not elevate endogenous thyrotropin or be withdrawn from thyroxine. Thyroid. 16(11):1121–30. DOI: 10.1089/thy.2006.16.1121. PMID: 17123339.
Article
47. Fatourechi V, Hay ID, Javedan H, Wiseman GA, Mullan BP, Gorman CA. 2002; Lack of impact of radioiodine therapy in tg-positive, diagnostic whole-body scan-negative patients with follicular cell-derived thyroid cancer. J Clin Endocrinol Metab. 87(4):1521–6. DOI: 10.1210/jcem.87.4.8373. PMID: 11932275.
Article
48. Koh JM, Kim ES, Ryu JS, Hong SJ, Kim WB, Shong YK. 2003; Effects of therapeutic doses of 131I in thyroid papillary carcinoma patients with elevated thyroglobulin level and negative 131I whole-body scan: comparative study. Clin Endocrinol (Oxf). 58(4):421–7. DOI: 10.1046/j.1365-2265.2003.01733.x. PMID: 12641624.
49. Kloos RT. 2008; Approach to the patient with a positive serum thyroglobulin and a negative radioiodine scan after initial therapy for differentiated thyroid cancer. J Clin Endocrinol Metab. 93(5):1519–25. DOI: 10.1210/jc.2007-2357. PMID: 18463349.
Article
50. Wang W, Larson SM, Tuttle RM, Kalaigian H, Kolbert K, Sonenberg M, et al. 2001; Resistance of [18f]-fluorodeoxyglucose- avid metastatic thyroid cancer lesions to treatment with high-dose radioactive iodine. Thyroid. 11(12):1169–75. DOI: 10.1089/10507250152741028. PMID: 12186505.
Article
51. Salvatore B, Paone G, Klain M, Storto G, Nicolai E, D'Amico D, et al. 2008; Fluorodeoxyglucose PET/CT in patients with differentiated thyroid cancer and elevated thyroglobulin after total thyroidectomy and (131)I ablation. Q J Nucl Med Mol Imaging. 52(1):2–8.
52. Robbins RJ, Wan Q, Grewal RK, Reibke R, Gonen M, Strauss HW, et al. 2006; Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab. 91(2):498–505. DOI: 10.1210/jc.2005-1534. PMID: 16303836.
Article
53. Yim JH, Kim EY, Bae Kim W, Kim WG, Kim TY, Ryu JS, et al. 2013; Long-term consequence of elevated thyroglobulin in differentiated thyroid cancer. Thyroid. 23(1):58–63. DOI: 10.1089/thy.2011.0487. PMID: 22973946. PMCID: PMC3539255.
Article
54. Miyauchi A, Kudo T, Miya A, Kobayashi K, Ito Y, Takamura Y, et al. 2011; Prognostic impact of serum thyroglobulin doubling-time under thyrotropin suppression in patients with papillary thyroid carcinoma who underwent total thyroidectomy. Thyroid. 21(7):707–16. DOI: 10.1089/thy.2010.0355. PMID: 21649472.
Article
55. Black EG, Sheppard MC, Hoffenberg R. 1987; Serial serum thyroglobulin measurements in the management of differentiated thyroid carcinoma. Clin Endocrinol (Oxf). 27(1):115–20. DOI: 10.1111/j.1365-2265.1987.tb00846.x. PMID: 3652482.
Article
56. Huang SH, Wang PW, Huang YE, Chou FF, Liu RT, Tung SC, et al. 2006; Sequential follow-up of serum thyroglobulin and whole body scan in thyroid cancer patients without initial metastasis. Thyroid. 16(12):1273–8. DOI: 10.1089/thy.2006.16.1273. PMID: 17199438.
Article
57. Mazzaferri EL, Kloos RT. 2001; Clinical review 128: current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab. 86(4):1447–63. DOI: 10.1210/jcem.86.4.7407. PMID: 11297567.
58. Pacini F, Agate L, Elisei R, Capezzone M, Ceccarelli C, Lippi F, et al. 2001; Outcome of differentiated thyroid cancer with detectable serum Tg and negative diagnostic (131)I whole body scan: comparison of patients treated with high (131)I activities versus untreated patients. J Clin Endocrinol Metab. 86(9):4092–7. DOI: 10.1210/jcem.86.9.7831. PMID: 11549631.
Article
59. van Tol KM, Jager PL, de Vries EG, Piers DA, Boezen HM, Sluiter WJ, et al. 2003; Outcome in patients with differentiated thyroid cancer with negative diagnostic whole-body scanning and detectable stimulated thyroglobulin. Eur J Endocrinol. 148(6):589–96. DOI: 10.1530/eje.0.1480589. PMID: 12773129.
Article
60. Kabasakal L, Selcuk NA, Shafipour H, Ozmen O, Onsel C, Uslu I. 2004; Treatment of iodine-negative thyroglobulin-positive thyroid cancer: differences in outcome in patients with macrometastases and patients with micrometastases. Eur J Nucl Med Mol Imaging. 31(11):1500–4. DOI: 10.1007/s00259-004-1516-y. PMID: 15232654.
Article
61. Tramontin MY, Nobre GM, Lopes M, Carneiro MP, Alves PAG, de Andrade FA, et al. 2021; High thyroglobulin and negative whole-body scan: no long-term benefit of empiric radioiodine therapy. Endocrine. 73(2):398–406. DOI: 10.1007/s12020-021-02647-8. PMID: 33570724.
Article
62. Yuan L, Wang J, Pan L, Feng H, Chen P, Luo J, et al. 2023; Outcome of patients with differentiated thyroid cancer treated with empirical radioiodine therapy on the basis of thyroglobulin elevation negative iodine scintigraphy (TENIS) syndrome without structural disease: a retrospective cohort study. Ann Nucl Med. 37(1):18–25. DOI: 10.1007/s12149-022-01799-5. PMID: 36318362.
Article
63. Kim K, Hong CM, Ha M, Choi M, Bang JI, Park S, et al. Efficacy of empirical 131I radioiodine therapy in well-differentiated thyroid carcinoma patients with thyroglobulin-elevated negative iodine scintigraphy syndrome: a systematic review and meta-analysis. Clin Nucl Med. In press 2024.
Article
64. Teng CJ, Hu YW, Chen SC, Yeh CM, Chiang HL, Chen TJ, et al. 2016; Use of radioactive iodine for thyroid cancer and risk of second primary malignancy: a nationwide population-based study. J Natl Cancer Inst. 108(2):djv314. DOI: 10.1093/jnci/djv314. PMID: 26538627.
Article
65. Rubino C, de Vathaire F, Dottorini ME, Hall P, Schvartz C, Couette JE, et al. 2003; Second primary malignancies in thyroid cancer patients. Br J Cancer. 89(9):1638–44. DOI: 10.1038/sj.bjc.6601319. PMID: 14583762. PMCID: PMC2394426.
Article
66. Walter MA, Turtschi CP, Schindler C, Minnig P, Muller- Brand J, Muller B. 2007; The dental safety profile of high-dose radioiodine therapy for thyroid cancer: long-term results of a longitudinal cohort study. J Nucl Med. 48(10):1620–5. DOI: 10.2967/jnumed.107.042192. PMID: 17873131.
Article
67. Kloos RT, Duvuuri V, Jhiang SM, Cahill KV, Foster JA, Burns JA. 2002; Nasolacrimal drainage system obstruction from radioactive iodine therapy for thyroid carcinoma. J Clin Endocrinol Metab. 87(12):5817–20. DOI: 10.1210/jc.2002-020210. PMID: 12466391.
Article
68. Brown AP, Chen J, Hitchcock YJ, Szabo A, Shrieve DC, Tward JD. 2008; The risk of second primary malignancies up to three decades after the treatment of differentiated thyroid cancer. J Clin Endocrinol Metab. 93(2):504–15. DOI: 10.1210/jc.2007-1154. PMID: 18029468.
Article
69. Sandeep TC, Strachan MW, Reynolds RM, Brewster DH, Scelo G, Pukkala E, et al. 2006; Second primary cancers in thyroid cancer patients: a multinational record linkage study. J Clin Endocrinol Metab. 91(5):1819–25. DOI: 10.1210/jc.2005-2009. PMID: 16478820.
Article
70. Subramanian S, Goldstein DP, Parlea L, Thabane L, Ezzat S, Ibrahim-Zada I, et al. 2007; Second primary malignancy risk in thyroid cancer survivors: a systematic review and meta-analysis. Thyroid. 17(12):1277–88. DOI: 10.1089/thy.2007.0171. PMID: 18020916.
Article
71. Delgado A, Guddati AK. 2021; Clinical endpoints in oncology - a primer. Am J Cancer Res. 11(4):1121–31.
72. Nakada K, Ishibashi T, Takei T, Hirata K, Shinohara K, Katoh S, et al. 2005; Does lemon candy decrease salivary gland damage after radioiodine therapy for thyroid cancer? J Nucl Med. 46(2):261–6.
73. Jentzen W, Balschuweit D, Schmitz J, Freudenberg L, Eising E, Hilbel T, et al. 2010; The influence of saliva flow stimulation on the absorbed radiation dose to the salivary glands during radioiodine therapy of thyroid cancer using 124I PET/CT imaging. Eur J Nucl Med Mol Imaging. 37(12):2298–306. DOI: 10.1007/s00259-010-1532-z. PMID: 20625723.
Article
74. Van Nostrand D, Bandaru V, Chennupati S, Wexler J, Kulkarni K, Atkins F, et al. 2010; Radiopharmacokinetics of radioiodine in the parotid glands after the administration of lemon juice. Thyroid. 20(10):1113–9. DOI: 10.1089/thy.2009.0429. PMID: 20883172.
Article
75. Mandel SJ, Mandel L. 2003; Radioactive iodine and the salivary glands. Thyroid. 13(3):265–71. DOI: 10.1089/105072503321582060. PMID: 12729475.
Article
76. Bomeli SR, Schaitkin B, Carrau RL, Walvekar RR. 2009; Interventional sialendoscopy for treatment of radioiodine-induced sialadenitis. Laryngoscope. 119(5):864–7. DOI: 10.1002/lary.20140. PMID: 19266587.
Article
77. Prendes BL, Orloff LA, Eisele DW. 2012; Therapeutic sialendoscopy for the management of radioiodine sialadenitis. Arch Otolaryngol Head Neck Surg. 138(1):15–9. DOI: 10.1001/archoto.2011.215. PMID: 22249623.
Article
78. Bhayani MK, Acharya V, Kongkiatkamon S, Farah S, Roberts DB, Sterba J, et al. 2015; Sialendoscopy for patients with radioiodine-induced sialadenitis and xerostomia. Thyroid. 25(7):834–8. DOI: 10.1089/thy.2014.0572. PMID: 25860842. PMCID: PMC5118964.
Article
79. Auttara-Atthakorn A, Sungmala J, Anothaisintawee T, Reutrakul S, Sriphrapradang C. 2022; Prevention of salivary gland dysfunction in patients treated with radioiodine for differentiated thyroid cancer: a systematic review of randomized controlled trials. Front Endocrinol (Lausanne). 13:960265. DOI: 10.3389/fendo.2022.960265. PMID: 36105397. PMCID: PMC9465079.
Article
80. Yu CY, Saeed O, Goldberg AS, Farooq S, Fazelzad R, Goldstein DP, et al. 2018; A systematic review and meta-analysis of subsequent malignant neoplasm risk after radioactive iodine treatment of thyroid cancer. Thyroid. 28(12):1662–73. DOI: 10.1089/thy.2018.0244. PMID: 30370820.
Article
81. Reinecke MJ, Ahlers G, Burchert A, Eilsberger F, Flux GD, Marlowe RJ, et al. 2022; Second primary malignancies induced by radioactive iodine treatment of differentiated thyroid carcinoma - a critical review and evaluation of the existing evidence. Eur J Nucl Med Mol Imaging. 49(9):3247–56. DOI: 10.1007/s00259-022-05762-4. PMID: 35320386. PMCID: PMC9250458.
Article
82. Ko KY, Kao CH, Lin CL, Huang WS, Yen RF. 2015; (131)I treatment for thyroid cancer and the risk of developing salivary and lacrimal gland dysfunction and a second primary malignancy: a nationwide population-based cohort study. Eur J Nucl Med Mol Imaging. 42(8):1172–8. DOI: 10.1007/s00259-015-3055-0. PMID: 25900274.
Article
83. Kim KJ, Kim KJ, Choi J, Kim NH, Kim SG. 2023; Linear association between radioactive iodine dose and second primary malignancy risk in thyroid cancer. J Natl Cancer Inst. 115(6):695–702. DOI: 10.1093/jnci/djad040. PMID: 36821433. PMCID: PMC10248848.
Article
84. Hong CM, Son J, Hyun MK, Lee JW, Lee J. 2023; Second primary malignancy after radioiodine therapy in thyroid cancer patient: a nationwide study. Nucl Med Mol Imaging. 57(6):275–86. DOI: 10.1007/s13139-023-00818-1. PMID: 37982105.
Article
85. Hong CM, Shin JY, Kim BI, Song HC, Yoon JK, Won KS, et al. 2022; Incidence rate and factors associated with the development of secondary cancers after radioiodine therapy in differentiated thyroid cancer: a multicenter retrospective study. Eur J Nucl Med Mol Imaging. 49(5):1661–70. DOI: 10.1007/s00259-021-05608-5. PMID: 34773164.
Article
86. Khang AR, Cho SW, Choi HS, Ahn HY, Yoo WS, Kim KW, et al. 2015; The risk of second primary malignancy is increased in differentiated thyroid cancer patients with a cumulative (131)I dose over 37 GBq. Clin Endocrinol (Oxf). 83(1):117–23. DOI: 10.1111/cen.12581. PMID: 25115234.
87. Kim S, Bang JI, Boo D, Kim B, Choi IY, Ko S, et al. 2022; Second primary malignancy risk in thyroid cancer and matched patients with and without radioiodine therapy analysis from the observational health data sciences and informatics. Eur J Nucl Med Mol Imaging. 49(10):3547–56. DOI: 10.1007/s00259-022-05779-9. PMID: 35362796.
Article
88. Seo GH, Cho YY, Chung JH, Kim SW. 2015; Increased risk of leukemia after radioactive iodine therapy in patients with thyroid cancer: a nationwide, population-based study in Korea. Thyroid. 25(8):927–34. DOI: 10.1089/thy.2014.0557. PMID: 26133388.
Article
89. Ali Hailan YM, Al-Dubai HN, Yassin MA. 2023; Chronic myeloid leukemia following exposure to radioactive iodine (I131): a systematic review. Oncology. 101(6):362–8. DOI: 10.1159/000530463. PMID: 37231874.
Article
90. Chen AY, Levy L, Goepfert H, Brown BW, Spitz MR, Vassilopoulou-Sellin R. 2001; The development of breast carcinoma in women with thyroid carcinoma. Cancer. 92(2):225–31. DOI: 10.1002/1097-0142(20010715)92:2<225::AID-CNCR1313>3.0.CO;2-B. PMID: 11466673.
Article
91. Zhang Y, Liang J, Li H, Cong H, Lin Y. 2016; Risk of second primary breast cancer after radioactive iodine treatment in thyroid cancer: a systematic review and meta-analysis. Nucl Med Commun. 37(2):110–5. DOI: 10.1097/MNM.0000000000000419. PMID: 26513055.
92. Hall P, Holm LE, Lundell G, Bjelkengren G, Larsson LG, Lindberg S, et al. 1991; Cancer risks in thyroid cancer patients. Br J Cancer. 64(1):159–63. DOI: 10.1038/bjc.1991.261. PMID: 1854616. PMCID: PMC1977300.
Article
93. Travis CC, Stabin MG. 2006; 131I ablation treatment in young females after the Chernobyl accident. J Nucl Med. 47(10):1723–7.
94. Pasqual E, Schonfeld S, Morton LM, Villoing D, Lee C, Berrington de Gonzalez A, et al. 2022; Association between radioactive iodine treatment for pediatric and young adulthood differentiated thyroid cancer and risk of second primary malignancies. J Clin Oncol. 40(13):1439–49. DOI: 10.1200/JCO.21.01841. PMID: 35044839. PMCID: PMC9061144.
Article
95. Seo GH, Kong KA, Kim BS, Kang SY, Moon BS, Yoon HJ, et al. 2021; Radioactive iodine treatment for children and young adults with thyroid cancer in South Korea: a population-based study. J Clin Endocrinol Metab. 106(7):e2580–e8. DOI: 10.1210/clinem/dgab192. PMID: 33755732.
Article
96. Benua RS, Cicale NR, Sonenberg M, Rawson RW. 1962; The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Ther Nucl Med. 87:171–82.
97. Perry WF, Hughes JF. 1952; The urinary excretion and thyroid uptake of iodine in renal disease. J Clin Invest. 31(5):457–63. DOI: 10.1172/JCI102630. PMID: 14927736. PMCID: PMC436440.
98. Smith LH, Riggs BL. 1975; Clinical and laboratory considerations in metabolic bone disease. Ann Clin Lab Sci. 5(4):252–6.
99. Morrish DW, Filipow LJ, McEwan AJ, Schmidt R, Murland KR, von Westarp C, et al. 1990; 131I treatment of thyroid papillary carcinoma in a patient with renal failure. Cancer. 66(12):2509–13. DOI: 10.1002/1097-0142(19901215)66:12<2509::AID-CNCR2820661211>3.0.CO;2-M. PMID: 2249192.
Article
100. Saracyn M, Bilski M, Kaminski G, Niemczyk S. 2014; Can radioiodine be administered effectively and safely to a patient with severe chronic kidney disease? Clin Endocrinol (Oxf). 81(2):169–74. DOI: 10.1111/cen.12480. PMID: 24766441.
Article
101. Sioka C, Fotopoulos A. 2011; Effects of I-131 therapy on gonads and pregnancy outcome in patients with thyroid cancer. Fertil Steril. 95(5):1552–9. DOI: 10.1016/j.fertnstert.2011.01.017. PMID: 21300333.
Article
102. Yaish I, Azem F, Gutfeld O, Silman Z, Serebro M, Sharon O, et al. 2018; A single radioactive iodine treatment has a deleterious effect on ovarian reserve in women with thyroid cancer: results of a prospective pilot study. Thyroid. 28(4):522–7. DOI: 10.1089/thy.2017.0442. PMID: 29466932.
Article
103. Acibucu F, Acibucu DO, Akkar OB, Dokmetas HS. 2016; Evaluation of ovarian reserve with AMH level in patients with well-differentiated thyroid cancer receiving radioactive iodine ablation treatment. Exp Clin Endocrinol Diabetes. 124(10):593–6. DOI: 10.1055/s-0042-115639. PMID: 27711957.
Article
104. Giusti M, Mittica M, Comite P, Campana C, Gay S, Mussap M. 2018; Anti-Mullerian hormone in pre-menopausal females after ablative radioiodine treatment for differentiated thyroid cancer. Endocrine. 60(3):516–23. DOI: 10.1007/s12020-017-1510-3. PMID: 29302874.
Article
105. Vini L, Hyer S, Al-Saadi A, Pratt B, Harmer C. 2002; Prognosis for fertility and ovarian function after treatment with radioiodine for thyroid cancer. Postgrad Med J. 78(916):92–3. DOI: 10.1136/pmj.78.916.92. PMID: 11807191. PMCID: PMC1742275.
Article
106. Dottorini ME, Lomuscio G, Mazzucchelli L, Vignati A, Colombo L. 1995; Assessment of female fertility and carcinogenesis after iodine-131 therapy for differentiated thyroid carcinoma. J Nucl Med. 36(1):21–7.
107. Sawka AM, Lakra DC, Lea J, Alshehri B, Tsang RW, Brierley JD, et al. 2008; A systematic review examining the effects of therapeutic radioactive iodine on ovarian function and future pregnancy in female thyroid cancer survivors. Clin Endocrinol (Oxf). 69(3):479–90. DOI: 10.1111/j.1365-2265.2008.03222.x. PMID: 18284643.
Article
108. Garsi JP, Schlumberger M, Rubino C, Ricard M, Labbe M, Ceccarelli C, et al. 2008; Therapeutic administration of 131I for differentiated thyroid cancer: radiation dose to ovaries and outcome of pregnancies. J Nucl Med. 49(5):845–52. DOI: 10.2967/jnumed.107.046599. PMID: 18413399.
Article
109. Lin JD, Wang HS, Weng HF, Kao PF. 1998; Outcome of pregnancy after radioactive iodine treatment for well differentiated thyroid carcinomas. J Endocrinol Invest. 21(10):662–7. DOI: 10.1007/BF03350795. PMID: 9854681.
Article
110. Schlumberger M, De Vathaire F, Ceccarelli C, Delisle MJ, Francese C, Couette JE, et al. 1996; Exposure to radioactive iodine-131 for scintigraphy or therapy does not preclude pregnancy in thyroid cancer patients. J Nucl Med. 37(4):606–12.
111. van der Lingen ACJ, Rijnierse MT, Hooghiemstra AM, Elshout S, van Halm VP, Batelaan NM, et al. 2023; The link between cardiac status and depression and anxiety in implantable cardioverter defibrillator patients: design and first results of the PSYCHE-ICD study. J Psychosom Res. 167:111182. DOI: 10.1016/j.jpsychores.2023.111182. PMID: 36801661.
Article
112. Wu JX, Young S, Ro K, Li N, Leung AM, Chiu HK, et al. 2015; Reproductive outcomes and nononcologic complications after radioactive iodine ablation for well-differentiated thyroid cancer. Thyroid. 25(1):133–8. DOI: 10.1089/thy.2014.0343. PMID: 25289542. PMCID: PMC4291087.
Article
113. Alexander EK, Pearce EN, Brent GA, Brown RS, Chen H, Dosiou C, et al. 2017; 2017 guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and the postpartum. Thyroid. 27(3):315–89. DOI: 10.1089/thy.2016.0457. PMID: 28056690.
Article
114. Kahaly GJ, Bartalena L, Hegedus L, Leenhardt L, Poppe K, Pearce SH. 2018; 2018 European Thyroid Association guideline for the management of Graves' hyperthyroidism. Eur Thyroid J. 7(4):167–86. DOI: 10.1159/000490384. PMID: 30283735. PMCID: PMC6140607.
Article
115. Van Nostrand D, Aiken M, Atkins F, Moreau S, Garcia C, Acio E, et al. 2009; The utility of radioiodine scans prior to iodine 131 ablation in patients with well-differentiated thyroid cancer. Thyroid. 19(8):849–55. DOI: 10.1089/thy.2008.0419. PMID: 19281428.
Article
116. Bartel Chair TB, Magerefteh S, Avram AM, Balon HR, De Blanche LE, Dadparvar S, et al. 2020; SNMMI procedure standard for scintigraphy for differentiated thyroid cancer. J Nucl Med Technol. 48(3):202–9. DOI: 10.2967/jnmt.120.243626. PMID: 32883775.
Article
117. Sisson JC, Freitas J, McDougall IR, Dauer LT, Hurley JR, et al. American Thyroid Association Taskforce on Radioiodine Safety. 2011; Radiation safety in the treatment of patients with thyroid diseases by radioiodine 131I : practice recommendations of the American Thyroid Association. Thyroid. 21(4):335–46. DOI: 10.1089/thy.2010.0403. PMID: 21417738.
Article
118. Bernard N, Jantzem H, Becker M, Pecriaux C, Benard- Laribiere A, Montastruc JL, et al. 2015; Severe adverse effects of bromocriptine in lactation inhibition: a pharmacovigilance survey. BJOG. 122(9):1244–51. DOI: 10.1111/1471-0528.13352. PMID: 25761676.
Article
119. Wichers M, Benz E, Palmedo H, Biersack HJ, Grunwald F, Klingmuller D. 2000; Testicular function after radioiodine therapy for thyroid carcinoma. Eur J Nucl Med. 27(5):503–7. DOI: 10.1007/s002590050535. PMID: 10853804.
Article
120. Hyer S, Vini L, O'Connell M, Pratt B, Harmer C. 2002; Testicular dose and fertility in men following I(131) therapy for thyroid cancer. Clin Endocrinol (Oxf). 56(6):755–8. DOI: 10.1046/j.1365-2265.2002.t01-1-01545.x. PMID: 12072044.
121. Cai Y, Yang Y, Pang X, Li S. 2023; The effect of radioactive iodine treatment for differentiated thyroid cancer on male gonadal function: a meta-analysis. Endocr Connect. 12(12):e230299. DOI: 10.1530/EC-23-0299. PMID: 37855387. PMCID: PMC10692683.
Article
122. Lushbaugh CC, Casarett GW. 1976; The effects of gonadal irradiation in clinical radiation therapy: a review. Cancer. 37(2 Suppl):1111–25. DOI: 10.1002/1097-0142(197602)37:2+<1111::AID-CNCR2820370821>3.0.CO;2-E. PMID: 766956.
Article
123. Sarkar SD, Beierwaltes WH, Gill SP, Cowley BJ. 1976; Subsequent fertility and birth histories of children and adolescents treated with 131I for thyroid cancer. J Nucl Med. 17(6):460–4.
124. Canale D, Ceccarelli C, Caglieresi C, Moscatelli A, Gavioli S, Santini P, et al. 2015; Effects of radioiodine treatment for differentiated thyroid cancer on testis function. Clin Endocrinol (Oxf). 82(2):295–9. DOI: 10.1111/cen.12514. PMID: 25138547.
Article
125. Bourcigaux N, Rubino C, Berthaud I, Toubert ME, Donadille B, Leenhardt L, et al. 2018; Impact on testicular function of a single ablative activity of 3.7 GBq radioactive iodine for differentiated thyroid carcinoma. Hum Reprod. 33(8):1408–16. DOI: 10.1093/humrep/dey222. PMID: 29912343.
Article
126. Mazzaferri EL. 2002; Gonadal damage from 131I therapy for thyroid cancer. Clin Endocrinol (Oxf). 57(3):313–4. DOI: 10.1046/j.1365-2265.2002.01611.x. PMID: 12201822.
Full Text Links
  • IJT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr