Int J Thyroidol.  2024 May;17(1):115-146. 10.11106/ijt.2024.17.1.115.

Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Part II. Follow-up Surveillance after Initial Treatment 2024

Affiliations
  • 1Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
  • 2Department of Nuclear Medicine, CHA Bundang Medical Center, Seongnam, Korea
  • 3Department of Internal Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
  • 4Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
  • 5Department of Radiology, Gangneung Asan Hospital, Gangneung, Korea
  • 6Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
  • 7Department of Nuclear Medicine, Chungnam National University Sejong Hospital, Sejong, Korea
  • 8Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
  • 9Department of Nuclear Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
  • 10Department of Nuclear Medicine, Kyungpook National University Chilgok Hospital, Daegu, Korea
  • 11Department of Internal Medicine, National Cancer Center, Goyang, Korea
  • 12Department of Radiology, Seoul National University Hospital, Seoul, Korea
  • 13Department of Internal Medicine, Seoul St. Mary’s Hospital, Seoul, Korea
  • 14Department of Nuclear Medicine, Chosun University Hospital, Gwangju, Korea
  • 15Department of Internal Medicine, Chung-Ang University Hospital, Seoul, Korea
  • 16Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Korea
  • 17Department of Radiology, Yeouido St. Mary’s Hospital, Seoul, Korea

Abstract

Based on the clinical, histopathological, and perioperative data of a patient with differentiated thyroid cancer (DTC), risk stratification based on their initial recurrence risk is a crucial follow-up (FU) strategy during the first 1–2 years after initial therapy. However, restratifiying the recurrence risk on the basis of current clinical data that becomes available after considering the response to treatment (ongoing risk stratification, ORS) provides a more accurate prediction of the status at the final FU and a more tailored management approach. Since the 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and DTC, the latest guidelines that include the National Comprehensive Cancer Network clinical practice and European Association for Medical Oncology guidelines have been updated to reflect several recent evidence in ORS and thyroid-stimulating hormone (TSH) suppression of DTC. The current clinical practice guideline was developed by extracting FU surveillance after the initial treatment section from the previous version of guidelines and updating it to reflect recent evidence. The current revised guideline includes recommendations for recent ORS, TSH target level based on risk stratification, FU tools for detection of recurrence and assessment of disease status, and long-term FU strategy for consideration of the disease status. These evidence-based recommendations are expected to avoid overtreatment and intensive FU of the majority of patients who will have a very good prognosis after the initial treatment of DTC patients, thereby ensuring that patients receive the most appropriate and effective treatment and FU options.

Keyword

Differentiated thyroid cancer; Risk of recurrence; Dynamic risk assessment; TSH suppression; Korean Thyroid Association; Guideline

Figure

  • Fig. II.2.3.A 질병 상태 평가에 따른 TSH 목표 농도 및 추적 검사.17) *고위험군: 5년 이후 환자의 나이와 동반된 질환 등을 고려하여 TSH 목표 농도를 완화한다. 중간위험군: 추적 기간 중(5년 이내 가능), 동반된 임상병리학적 위험인자를 종합한 재발위험도와 추적 중 갑상선글로불린 및 갑상선글로불린항체 농도 변화, 나이, 동반질환 등을 고려하여 TSH 목표 농도를 완화한다. 18F-FDG-PET: FDG 양전자 방출 단층 촬영, Rx WBS: 방사성요오드 치료 후 전신스캔검사


Reference

References

1. Kim S, Wei JP, Braveman JM, Brams DM. 2004; Predicting outcome and directing therapy for papillary thyroid carcinoma. Arch Surg. 139(4):390–4. discussion 3–4. DOI: 10.1001/archsurg.139.4.390. PMID: 15078706.
Article
2. Links TP, van Tol KM, Jager PL, Plukker JT, Piers DA, Boezen HM, et al. 2005; Life expectancy in differentiated thyroid cancer: a novel approach to survival analysis. Endocr Relat Cancer. 12(2):273–80. DOI: 10.1677/erc.1.00892. PMID: 15947102.
Article
3. Bogdanovski AK, Sturgeon C, James BC. 2023; Financial toxicity in thyroid cancer survivors. Curr Opin Endocrinol Diabetes Obes. 30(5):238–43. DOI: 10.1097/MED.0000000000000826. PMID: 37470486.
Article
4. Mongelli MN, Giri S, Peipert BJ, Helenowski IB, Yount SE, Sturgeon C. 2020; Financial burden and quality of life among thyroid cancer survivors. Surgery. 167(3):631–7. DOI: 10.1016/j.surg.2019.11.014. PMID: 31862171.
Article
5. Tuttle RM, Tala H, Shah J, Leboeuf R, Ghossein R, Gonen M, et al. 2010; Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid. 20(12):1341–9. DOI: 10.1089/thy.2010.0178. PMID: 21034228. PMCID: PMC4845674.
Article
6. Tuttle RM, Leboeuf R. 2008; Follow up approaches in thyroid cancer: a risk adapted paradigm. Endocrinol Metab Clin North Am. 37(2):419–35. ix–x. DOI: 10.1016/j.ecl.2008.02.008. PMID: 18502335.
Article
7. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2016; 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 26(1):1–133. DOI: 10.1089/thy.2015.0020. PMID: 26462967. PMCID: PMC4739132.
Article
8. Momesso DP, Tuttle RM. 2014; Update on differentiated thyroid cancer staging. Endocrinol Metab Clin North Am. 43(2):401–21. DOI: 10.1016/j.ecl.2014.02.010. PMID: 24891169.
Article
9. Verburg FA, Stokkel MP, Duren C, Verkooijen RB, Mader U, van Isselt JW, et al. 2010; No survival difference after successful (131)I ablation between patients with initially low-risk and high-risk differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 37(2):276–83. DOI: 10.1007/s00259-009-1315-6. PMID: 20091165.
Article
10. Shen FC, Hsieh CJ, Huang IC, Chang YH, Wang PW. 2017; Dynamic risk estimates of outcome in Chinese patients with well-differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation. Thyroid. 27(4):531–6. DOI: 10.1089/thy.2016.0479. PMID: 28007013.
Article
11. Vaisman F, Momesso D, Bulzico DA, Pessoa CH, Dias F, Corbo R, et al. 2012; Spontaneous remission in thyroid cancer patients after biochemical incomplete response to initial therapy. Clin Endocrinol (Oxf). 77(1):132–8. DOI: 10.1111/j.1365-2265.2012.04342.x. PMID: 22248037.
Article
12. Llamas-Olier AE, Cuellar DI, Buitrago G. 2018; Intermediate-risk papillary thyroid cancer: risk factors for early recurrence in patients with excellent response to initial therapy. Thyroid. 28(10):1311–7. DOI: 10.1089/thy.2017.0578. PMID: 30105948.
Article
13. Robbins RJ, Wan Q, Grewal RK, Reibke R, Gonen M, Strauss HW, et al. 2006; Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab. 91(2):498–505. DOI: 10.1210/jc.2005-1534. PMID: 16303836.
Article
14. Deandreis D, Al Ghuzlan A, Leboulleux S, Lacroix L, Garsi JP, Talbot M, et al. 2011; Do histological, immunohistochemical, and metabolic (radioiodine and fluorodeoxyglucose uptakes) patterns of metastatic thyroid cancer correlate with patient outcome? Endocr Relat Cancer. 18(1):159–69. DOI: 10.1677/ERC-10-0233. PMID: 21118976.
Article
15. Miyauchi A, Kudo T, Miya A, Kobayashi K, Ito Y, Takamura Y, et al. 2011; Prognostic impact of serum thyroglobulin doubling-time under thyrotropin suppression in patients with papillary thyroid carcinoma who underwent total thyroidectomy. Thyroid. 21(7):707–16. DOI: 10.1089/thy.2010.0355. PMID: 21649472.
Article
16. Chou R, Dana T, Brent GA, Goldner W, Haymart M, Leung AM, et al. 2022; Serum thyroglobulin measurement following surgery without radioactive iodine for differentiated thyroid cancer: a systematic review. Thyroid. 32(6):613–39. DOI: 10.1089/thy.2021.0666. PMID: 35412871.
Article
17. Filetti S, Durante C, Hartl D, Leboulleux S, Locati LD, Newbold K, et al. 2019; Thyroid cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 30(12):1856–83. DOI: 10.1093/annonc/mdz400. PMID: 31549998.
Article
18. Pitoia F, Jerkovich F. 2019; Dynamic risk assessment in patients with differentiated thyroid cancer. Endocr Relat Cancer. 26(10):R553–R66. DOI: 10.1530/ERC-19-0213. PMID: 31394499.
Article
19. Castagna MG, Maino F, Cipri C, Belardini V, Theodoropoulou A, Cevenini G, et al. 2011; Delayed risk stratification, to include the response to initial treatment (surgery and radioiodine ablation), has better outcome predictivity in differentiated thyroid cancer patients. Eur J Endocrinol. 165(3):441–6. DOI: 10.1530/EJE-11-0466. PMID: 21750043.
Article
20. Vaisman F, Tala H, Grewal R, Tuttle RM. 2011; In differentiated thyroid cancer, an incomplete structural response to therapy is associated with significantly worse clinical outcomes than only an incomplete thyroglobulin response. Thyroid. 21(12):1317–22. DOI: 10.1089/thy.2011.0232. PMID: 22136267.
Article
21. Cano-Palomares A, Castells I, Capel I, Bella MR, Barcons S, Serrano A, et al. 2014; Response to initial therapy of differentiated thyroid cancer predicts the long-term outcome better than classical risk stratification systems. Int J Endocrinol. 2014:591285. DOI: 10.1155/2014/591285. PMID: 25114681. PMCID: PMC4121103.
Article
22. Jeon MJ, Kim WG, Park WR, Han JM, Kim TY, Song DE, et al. 2014; Modified dynamic risk stratification for predicting recurrence using the response to initial therapy in patients with differentiated thyroid carcinoma. Eur J Endocrinol. 170(1):23–30. DOI: 10.1530/EJE-13-0524. PMID: 24088549.
Article
23. Schlumberger M, Leboulleux S, Catargi B, Deandreis D, Zerdoud S, Bardet S, et al. 2018; Outcome after ablation in patients with low-risk thyroid cancer (ESTIMABL1): 5-year follow-up results of a randomised, phase 3, equivalence trial. Lancet Diabetes Endocrinol. 6(8):618–26. DOI: 10.1016/S2213-8587(18)30113-X. PMID: 29807824.
Article
24. Han JM, Kim WB, Yim JH, Kim WG, Kim TY, Ryu JS, et al. 2012; Long-term clinical outcome of differentiated thyroid cancer patients with undetectable stimulated thyroglobulin level one year after initial treatment. Thyroid. 22(8):784–90. DOI: 10.1089/thy.2011.0322. PMID: 22780573. PMCID: PMC3407383.
Article
25. Rosario PW, Furtado MS, Mineiro Filho AF, Lacerda RX, Calsolari MR. 2012; Value of repeat stimulated thyroglobulin testing in patients with differentiated thyroid carcinoma considered to be free of disease in the first year after ablation. Thyroid. 22(5):482–6. DOI: 10.1089/thy.2011.0214. PMID: 22175271.
Article
26. Momesso DP, Vaisman F, Yang SP, Bulzico DA, Corbo R, Vaisman M, et al. 2016; Dynamic risk stratification in patients with differentiated thyroid cancer treated without radioactive iodine. J Clin Endocrinol Metab. 101(7):2692–700. DOI: 10.1210/jc.2015-4290. PMID: 27023446. PMCID: PMC6287503.
Article
27. Park S, Kim WG, Song E, Oh HS, Kim M, Kwon H, et al. 2017; Dynamic risk stratification for predicting recurrence in patients with differentiated thyroid cancer treated without radioactive iodine remnant ablation therapy. Thyroid. 27(4):524–30. DOI: 10.1089/thy.2016.0477. PMID: 27869547.
Article
28. Sung TY, Cho JW, Lee YM, Lee YH, Kwon H, Jeon MJ, et al. 2017; Dynamic risk stratification in stage I papillary thyroid cancer patients younger than 45 years of age. Thyroid. 27(11):1400–7. DOI: 10.1089/thy.2017.0199. PMID: 28847226.
Article
29. Cho JW, Lee YM, Lee YH, Hong SJ, Yoon JH. 2018; Dynamic risk stratification system in post-lobectomy low-risk and intermediate-risk papillary thyroid carcinoma patients. Clin Endocrinol (Oxf). 89(1):100–9. DOI: 10.1111/cen.13721. PMID: 29672893.
Article
30. Dong P, Wang L, Xiao L, Yang L, Huang R, Li L. 2021; A new dynamic response to therapy assessment in postoperative patients with low-risk differentiated thyroid cancer treated without radioactive iodine. Front Oncol. 11:764258. DOI: 10.3389/fonc.2021.764258. PMID: 34912712. PMCID: PMC8667687.
Article
31. Abelleira E, Jerkovich F. 2024; Dynamic risk assessment in patients with differentiated thyroid cancer. Rev Endocr Metab Disord. 25(1):79–93. DOI: 10.1007/s11154-023-09857-7. PMID: 38015344.
Article
32. Park S, Jeon MJ, Oh HS, Lee YM, Sung TY, Han M, et al. 2018; Changes in serum thyroglobulin levels after lobectomy in patients with low-risk papillary thyroid cancer. Thyroid. 28(8):997–1003. DOI: 10.1089/thy.2018.0046. PMID: 29845894.
Article
33. Schuff KG, Weber SM, Givi B, Samuels MH, Andersen PE, Cohen JI. 2008; Efficacy of nodal dissection for treatment of persistent/recurrent papillary thyroid cancer. Laryngoscope. 118(5):768–75. DOI: 10.1097/MLG.0b013e318162cae9. PMID: 18197134.
Article
34. Al-Saif O, Farrar WB, Bloomston M, Porter K, Ringel MD, Kloos RT. 2010; Long-term efficacy of lymph node reoperation for persistent papillary thyroid cancer. J Clin Endocrinol Metab. 95(5):2187–94. DOI: 10.1210/jc.2010-0063. PMID: 20332244. PMCID: PMC5399471.
Article
35. Yim JH, Kim WB, Kim EY, Kim WG, Kim TY, Ryu JS, et al. 2011; The outcomes of first reoperation for locoregionally recurrent/persistent papillary thyroid carcinoma in patients who initially underwent total thyroidectomy and remnant ablation. J Clin Endocrinol Metab. 96(7):2049–56. DOI: 10.1210/jc.2010-2298. PMID: 21508143.
Article
36. Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, et al. 2016; Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 126(3):1052–66. DOI: 10.1172/JCI85271. PMID: 26878173. PMCID: PMC4767360.
Article
37. Kim TH, Ki CS, Kim HS, Kim K, Choe JH, Kim JH, et al. 2017; Refining dynamic risk stratification and prognostic groups for differentiated thyroid cancer with TERT promoter mutations. J Clin Endocrinol Metab. 102(5):1757–64. DOI: 10.1210/jc.2016-3434. PMID: 28323925.
Article
38. Song YS, Lim JA, Choi H, Won JK, Moon JH, Cho SW, et al. 2016; Prognostic effects of TERT promoter mutations are enhanced by coexistence with BRAF or RAS mutations and strengthen the risk prediction by the ATA or TNM staging system in differentiated thyroid cancer patients. Cancer. 122(9):1370–9. DOI: 10.1002/cncr.29934. PMID: 26969876.
Article
39. Diessl S, Holzberger B, Mader U, Grelle I, Smit JW, Buck AK, et al. 2012; Impact of moderate vs stringent TSH suppression on survival in advanced differentiated thyroid carcinoma. Clin Endocrinol (Oxf). 76(4):586–92. DOI: 10.1111/j.1365-2265.2011.04272.x. PMID: 22059804.
40. McGriff NJ, Csako G, Gourgiotis L, Lori CG, Pucino F, Sarlis NJ. Effects of thyroid hormone suppression therapy on adverse clinical outcomes in thyroid cancer. Ann Med. 2002; 34(7-8):554–64. DOI: 10.1080/078538902321117760. PMID: 12553495.
Article
41. Haymart MR, Repplinger DJ, Leverson GE, Elson DF, Sippel RS, Jaume JC, et al. 2008; Higher serum thyroid stimulating hormone level in thyroid nodule patients is associated with greater risks of differentiated thyroid cancer and advanced tumor stage. J Clin Endocrinol Metab. 93(3):809–14. DOI: 10.1210/jc.2007-2215. PMID: 18160464. PMCID: PMC2266959.
Article
42. Brabant G. 2008; Thyrotropin suppressive therapy in thyroid carcinoma: what are the targets? J Clin Endocrinol Metab. 93(4):1167–9. DOI: 10.1210/jc.2007-2228. PMID: 18390811.
Article
43. Toft AD. 2001; Clinical practice. Subclinical hyperthyroidism. N Engl J Med. 345(7):512–6. DOI: 10.1056/NEJMcp010145. PMID: 11519506.
44. Biondi B, Cooper DS. 2010; Benefits of thyrotropin suppression versus the risks of adverse effects in differentiated thyroid cancer. Thyroid. 20(2):135–46. DOI: 10.1089/thy.2009.0311. PMID: 20151821.
Article
45. Biondi B, Fazio S, Cuocolo A, Sabatini D, Nicolai E, Lombardi G, et al. 1996; Impaired cardiac reserve and exercise capacity in patients receiving long-term thyrotropin suppressive therapy with levothyroxine. J Clin Endocrinol Metab. 81(12):4224–8. DOI: 10.1210/jcem.81.12.8954019. PMID: 8954019.
Article
46. Pajamaki N, Metso S, Hakala T, Ebeling T, Huhtala H, Ryodi E, et al. 2018; Long-term cardiovascular morbidity and mortality in patients treated for differentiated thyroid cancer. Clin Endocrinol (Oxf). 88(2):303–10. DOI: 10.1111/cen.13519. PMID: 29154445.
Article
47. Lee EK, Ahn HY, Ku EJ, Yoo WS, Lee YK, Nam KH, et al. 2021; Cardiovascular outcomes in thyroid cancer patients treated with thyroidectomy: a meta-analysis. J Clin Endocrinol Metab. 106(12):3644–54. DOI: 10.1210/clinem/dgab576. PMID: 34347085.
Article
48. Vestergaard P, Mosekilde L. 2002; Fractures in patients with hyperthyroidism and hypothyroidism: a nationwide follow-up study in 16,249 patients. Thyroid. 12(5):411–9. DOI: 10.1089/105072502760043503. PMID: 12097203.
Article
49. Biondi B, Cooper DS. 2019; Thyroid hormone suppression therapy. Endocrinol Metab Clin North Am. 48(1):227–37. DOI: 10.1016/j.ecl.2018.10.008. PMID: 30717904.
Article
50. Heemstra KA, Hamdy NA, Romijn JA, Smit JW. 2006; The effects of thyrotropin-suppressive therapy on bone metabolism in patients with well-differentiated thyroid carcinoma. Thyroid. 16(6):583–91. DOI: 10.1089/thy.2006.16.583. PMID: 16839260.
Article
51. Yoon BH, Lee Y, Oh HJ, Kim SH, Lee YK. 2019; Influence of thyroid-stimulating hormone suppression therapy on bone mineral density in patients with differentiated thyroid cancer: a meta-analysis. J Bone Metab. 26(1):51–60. DOI: 10.11005/jbm.2019.26.1.51. PMID: 30899725. PMCID: PMC6416150.
Article
52. Wang LY, Smith AW, Palmer FL, Tuttle RM, Mahrous A, Nixon IJ, et al. 2015; Thyrotropin suppression increases the risk of osteoporosis without decreasing recurrence in ATA low- and intermediate-risk patients with differentiated thyroid carcinoma. Thyroid. 25(3):300–7. DOI: 10.1089/thy.2014.0287. PMID: 25386760. PMCID: PMC6916125.
Article
53. Ku EJ, Yoo WS, Lee EK, Ahn HY, Woo SH, Hong JH, et al. 2021; Effect of TSH suppression therapy on bone mineral density in differentiated thyroid cancer: a systematic review and meta-analysis. J Clin Endocrinol Metab. 106(12):3655–67. DOI: 10.1210/clinem/dgab539. PMID: 34302730.
Article
54. Kwak D, Ha J, Won Y, Kwon Y, Park S. 2021; Effects of thyroid-stimulating hormone suppression after thyroidectomy for thyroid cancer on bone mineral density in postmenopausal women: a systematic review and meta-analysis. BMJ Open. 11(5):e043007. DOI: 10.1136/bmjopen-2020-043007. PMID: 33986046. PMCID: PMC8126273.
Article
55. Tagay S, Herpertz S, Langkafel M, Erim Y, Freudenberg L, Schopper N, et al. 2005; Health-related quality of life, anxiety and depression in thyroid cancer patients under short-term hypothyroidism and TSH-suppressive levothyroxine treatment. Eur J Endocrinol. 153(6):755–63. DOI: 10.1530/eje.1.02047. PMID: 16322380.
Article
56. Lee JK, Ku EJ, Kim SJ, Kim W, Cho JW, Jung KY, et al. 2024; Effect of thyroid-stimulating hormone suppression on quality of life in thyroid lobectomy patients: interim analysis of a multicenter, randomized controlled trial in low- to intermediate-risk thyroid cancer patients (MASTER study). Ann Surg Treat Res. 106(1):19–30. DOI: 10.4174/astr.2024.106.1.19. PMID: 38205091. PMCID: PMC10774702.
Article
57. Thyroid cancer: assessment and management. NICE guideline, No. 230. London: National Institute for Health and Care Excellence (NICE);2022.
58. Watson-Brown P, Anderson D. Differentiated thyroid cancer: a guide to survivorship care. Aust J Gen Pract. 2023; 52(1-2):47–51. DOI: 10.31128/AJGP-02-22-6327. PMID: 36796772.
Article
59. Carhill AA, Litofsky DR, Ross DS, Jonklaas J, Cooper DS, Brierley JD, et al. 2015; Long-term outcomes following therapy in differentiated thyroid carcinoma: NTCTCS registry analysis 1987-2012. J Clin Endocrinol Metab. 100(9):3270–9. DOI: 10.1210/JC.2015-1346. PMID: 26171797. PMCID: PMC5393522.
Article
60. Sugitani I, Fujimoto Y. 2010; Does postoperative thyrotropin suppression therapy truly decrease recurrence in papillary thyroid carcinoma? A randomized controlled trial. J Clin Endocrinol Metab. 95(10):4576–83. DOI: 10.1210/jc.2010-0161. PMID: 20660039.
Article
61. Abo-Touk NA, Zayed DH. 2015; The efficacy of thyrotropin suppression therapy in treatment of differentiated thyroid cancer after total thyroidectomy. Forum Clin Oncol. 6(2):24–33. DOI: 10.1515/fco-2015-0010.
Article
62. Lamartina L, Montesano T, Falcone R, Biffoni M, Grani G, Maranghi M, et al. 2019; Is it worth suppressing TSH in low- and intermediate-risk papillary thyroid cancer patients before the first disease assessment? Endocr Pract. 25(2):165–9. DOI: 10.4158/EP-2018-0393. PMID: 30383494.
Article
63. Lee MC, Kim MJ, Choi HS, Cho SW, Lee GH, Park YJ, et al. 2019; Postoperative thyroid-stimulating hormone levels did not affect recurrence after thyroid lobectomy in patients with papillary thyroid cancer. Endocrinol Metab (Seoul). 34(2):150–7. DOI: 10.3803/EnM.2019.34.2.150. PMID: 31099202. PMCID: PMC6599911.
Article
64. Park JH, Lee YM, Lee YH, Hong SJ, Yoon JH. 2018; The prognostic value of serum thyroid-stimulating hormone level post-lobectomy in low- and intermediate-risk papillary thyroid carcinoma. J Surg Oncol. 118(3):390–6. DOI: 10.1002/jso.25164. PMID: 30114333.
Article
65. Park S, Kim WG, Han M, Jeon MJ, Kwon H, Kim M, et al. 2017; Thyrotropin suppressive therapy for low-risk small thyroid cancer: a propensity score-matched cohort study. Thyroid. 27(9):1164–70. DOI: 10.1089/thy.2017.0177. PMID: 28699428.
Article
66. Xu S, Huang Y, Huang H, Zhang X, Qian J, Wang X, et al. 2022; Optimal serum thyrotropin level for patients with papillary thyroid carcinoma after lobectomy. Thyroid. 32(2):138–44. DOI: 10.1089/thy.2021.0404. PMID: 34617446.
Article
67. Ahn D, Lee GJ, Sohn JH, Jeon JH. 2020; Oncological impact of hypothyroidism and levothyroxine supplementation following hemithyroidectomy in patients with papillary thyroid carcinoma. Head Neck. 42(5):1004–13. DOI: 10.1002/hed.26075. PMID: 31930773.
Article
68. Klubo-Gwiezdzinska J, Auh S, Gershengorn M, Daley B, Bikas A, Burman K, et al. 2019; Association of thyrotropin suppression with survival outcomes in patients with intermediate- and high-risk differentiated thyroid cancer. JAMA Netw Open. 2(2):e187754. DOI: 10.1001/jamanetworkopen.2018.7754. PMID: 30707227. PMCID: PMC6484595.
Article
69. Abiri A, Nguyen T, Goshtasbi K, Torabi SJ, Kuan EC, Armstrong WB, et al. 2023; A comparative analysis of treatment efficacy in intermediate-risk thyroid cancer. Eur Arch Otorhinolaryngol. 280(5):2525–33. DOI: 10.1007/s00405-023-07832-1. PMID: 36651960.
Article
70. Ito Y, Masuoka H, Fukushima M, Inoue H, Kihara M, Tomoda C, et al. 2010; Prognosis and prognostic factors of patients with papillary carcinoma showing distant metastasis at surgery (M1 patients) in Japan. Endocr J. 57(6):523–31. DOI: 10.1507/endocrj.K10E-019. PMID: 20379035.
Article
71. Mukhtar N, Aljamei H, Aljomaiah A, Moria Y, Alzahrani AS. 2021; Natural course of the American Thyroid Association response to therapy statuses (dynamic risk stratification) in differentiated thyroid cancer. Eur Thyroid J. 10(3):198–207. DOI: 10.1159/000511708. PMID: 34178705. PMCID: PMC8216009.
Article
72. Won HR, Jeon E, Chang JW, Kang YE, Song K, Kim SW, et al. 2022; Is maintaining thyroid-stimulating hormone effective in patients undergoing thyroid lobectomy for low-risk differentiated thyroid cancer? A systematic review and meta-analysis. Cancers (Basel). 14(6):1470. DOI: 10.3390/cancers14061470. PMID: 35326621. PMCID: PMC8946503.
Article
73. Jonklaas J, Sarlis NJ, Litofsky D, Ain KB, Bigos ST, Brierley JD, et al. 2006; Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid. 16(12):1229–42. DOI: 10.1089/thy.2006.16.1229. PMID: 17199433.
Article
74. Hovens GC, Stokkel MP, Kievit J, Corssmit EP, Pereira AM, Romijn JA, et al. 2007; Associations of serum thyrotropin concentrations with recurrence and death in differentiated thyroid cancer. J Clin Endocrinol Metab. 92(7):2610–5. DOI: 10.1210/jc.2006-2566. PMID: 17426094.
Article
75. Lee EK, Kang YE, Park YJ, Koo BS, Chung KW, Ku EJ, et al. 2021; A multicenter, randomized, controlled trial for assessing the usefulness of suppressing thyroid stimulating hormone target levels after thyroid lobectomy in low to intermediate risk thyroid cancer patients (MASTER): a study protocol. Endocrinol Metab (Seoul). 36(3):574–81. DOI: 10.3803/EnM.2020.943. PMID: 34034365. PMCID: PMC8258337.
Article
76. Papaleontiou M, Chen DW, Banerjee M, Reyes-Gastelum D, Hamilton AS, Ward KC, et al. 2021; Thyrotropin suppression for papillary thyroid cancer: a physician survey study. Thyroid. 31(9):1383–90. DOI: 10.1089/thy.2021.0033. PMID: 33779292. PMCID: PMC8558057.
Article
77. Klein Hesselink EN, Klein Hesselink MS, de Bock GH, Gansevoort RT, Bakker SJ, Vredeveld EJ, et al. 2013; Long-term cardiovascular mortality in patients with differentiated thyroid carcinoma: an observational study. J Clin Oncol. 31(32):4046–53. DOI: 10.1200/JCO.2013.49.1043. PMID: 24101052.
Article
78. Yu J, Kaur R, Ayeni FE, Eslick GD, Edirimanne S. 2023; Cardiovascular outcomes of differentiated thyroid cancer patients on long term TSH suppression: a systematic review and meta-analysis. Horm Metab Res. 55(6):379–87. DOI: 10.1055/a-2084-3408. PMID: 37295414.
Article
79. Shargorodsky M, Serov S, Gavish D, Leibovitz E, Harpaz D, Zimlichman R. 2006; Long-term thyrotropin-suppressive therapy with levothyroxine impairs small and large artery elasticity and increases left ventricular mass in patients with thyroid carcinoma. Thyroid. 16(4):381–6. DOI: 10.1089/thy.2006.16.381. PMID: 16646685.
Article
80. Taillard V, Sardinoux M, Oudot C, Fesler P, Rugale C, Raingeard I, et al. 2011; Early detection of isolated left ventricular diastolic dysfunction in high-risk differentiated thyroid carcinoma patients on TSH-suppressive therapy. Clin Endocrinol (Oxf). 75(5):709–14. DOI: 10.1111/j.1365-2265.2011.04138.x. PMID: 21645022.
Article
81. Gigliotti BJ, Jasim S. 2024; Differentiated thyroid cancer: a focus on post-operative thyroid hormone replacement and thyrotropin suppression therapy. Endocrine. 83(2):251–8. DOI: 10.1007/s12020-023-03548-8. PMID: 37824045.
Article
82. Feldt-Rasmussen U, Klose M. Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, editors. Clinical strategies in the testing of thyroid function. Endotext. South Dartmouth (MA): 2000.
83. Cox C, Bosley M, Southerland LB, Ahmadi S, Perkins J, Roman S, et al. 2018; Lobectomy for treatment of differentiated thyroid cancer: can patients avoid postoperative thyroid hormone supplementation and be compliant with the American Thyroid Association guidelines? Surgery. 163(1):75–80. DOI: 10.1016/j.surg.2017.04.039. PMID: 29122328.
Article
84. Morris LF, Iupe IM, Edeiken-Monroe BS, Warneke CL, Hansen MO, Evans DB, et al. 2013; Pre-operative ultrasound identification of thyroiditis helps predict the need for thyroid hormone replacement after thyroid lobectomy. Endocr Pract. 19(6):1015–20. DOI: 10.4158/EP12334.OR. PMID: 24013973.
Article
85. Kim SY, Kim HJ, Kim SM, Chang H, Lee YS, Chang HS, et al. 2020; Thyroid hormone supplementation therapy for differentiated thyroid cancer after lobectomy: 5 years of follow-up. Front Endocrinol (Lausanne). 11:520. DOI: 10.3389/fendo.2020.00520. PMID: 32849303. PMCID: PMC7412630.
Article
86. Lawton RI, Sabatini BL, Hochbaum DR. 2024; Longevity, demographic characteristics, and socio-economic status are linked to triiodothyronine levels in the general population. Proc Natl Acad Sci U S A. 121(2):e2308652121. DOI: 10.1073/pnas.2308652121. PMID: 38175866. PMCID: PMC10786306.
Article
87. Wiersinga WM. 2014; Paradigm shifts in thyroid hormone replacement therapies for hypothyroidism. Nat Rev Endocrinol. 10(3):164–74. DOI: 10.1038/nrendo.2013.258. PMID: 24419358.
Article
88. DiStefano J 3rd, Jonklaas J. 2019; Predicting optimal combination LT4 + LT3 therapy for hypothyroidism based on residual thyroid function. Front Endocrinol (Lausanne). 10:746. DOI: 10.3389/fendo.2019.00746. PMID: 31803137. PMCID: PMC6873785.
Article
89. Salvatore D, Porcelli T, Ettleson MD, Bianco AC. 2022; The relevance of T(3) in the management of hypothyroidism. Lancet Diabetes Endocrinol. 10(5):366–72. DOI: 10.1016/S2213-8587(22)00004-3. PMID: 35240052.
Article
90. Baudin E, Do Cao C, Cailleux AF, Leboulleux S, Travagli JP, Schlumberger M. 2003; Positive predictive value of serum thyroglobulin levels, measured during the first year of follow-up after thyroid hormone withdrawal, in thyroid cancer patients. J Clin Endocrinol Metab. 88(3):1107–11. DOI: 10.1210/jc.2002-021365. PMID: 12629092.
91. Schaap J, Eustatia-Rutten CF, Stokkel M, Links TP, Diamant M, van der Velde EA, et al. 2002; Does radioiodine therapy have disadvantageous effects in non-iodine accumulating differentiated thyroid carcinoma? Clin Endocrinol (Oxf). 57(1):117–24. DOI: 10.1046/j.1365-2265.2002.01574.x. PMID: 12100079.
Article
92. Pacini F, Sabra MM, Tuttle RM. 2011; Clinical relevance of thyroglobulin doubling time in the management of patients with differentiated thyroid cancer. Thyroid. 21(7):691–2. DOI: 10.1089/thy.2011.2107.ed1. PMID: 21707434.
Article
93. van Kinschot CMJ, Peeters RP, van den Berg SAA, Verburg FA, van Noord C, van Ginhoven TM, et al. 2022; Thyroglobulin and thyroglobulin antibodies: assay-dependent management consequences in patients with differentiated thyroid carcinoma. Clin Chem Lab Med. 60(5):756–65. DOI: 10.1515/cclm-2021-1046. PMID: 35108464.
Article
94. Spencer CA. 2011; Clinical review: clinical utility of thyroglobulin antibody (TgAb) measurements for patients with differentiated thyroid cancers (DTC). J Clin Endocrinol Metab. 96(12):3615–27. DOI: 10.1210/jc.2011-1740. PMID: 21917876.
95. Gorges R, Maniecki M, Jentzen W, Sheu SN, Mann K, Bockisch A, et al. 2005; Development and clinical impact of thyroglobulin antibodies in patients with differentiated thyroid carcinoma during the first 3 years after thyroidectomy. Eur J Endocrinol. 153(1):49–55. DOI: 10.1530/eje.1.01940. PMID: 15994745.
Article
96. Latrofa F, Ricci D, Montanelli L, Rocchi R, Piaggi P, Sisti E, et al. 2012; Lymphocytic thyroiditis on histology correlates with serum thyroglobulin autoantibodies in patients with papillary thyroid carcinoma: impact on detection of serum thyroglobulin. J Clin Endocrinol Metab. 97(7):2380–7. DOI: 10.1210/jc.2011-2812. PMID: 22539585.
Article
97. Spencer C, Fatemi S. 2013; Thyroglobulin antibody (TgAb) methods - strengths, pitfalls and clinical utility for monitoring TgAb-positive patients with differentiated thyroid cancer. Best Pract Res Clin Endocrinol Metab. 27(5):701–12. DOI: 10.1016/j.beem.2013.07.003. PMID: 24094640.
Article
98. Kim WG, Yoon JH, Kim WB, Kim TY, Kim EY, Kim JM, et al. 2008; Change of serum antithyroglobulin antibody levels is useful for prediction of clinical recurrence in thyroglobulin- negative patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab. 93(12):4683–9. DOI: 10.1210/jc.2008-0962. PMID: 18812478.
99. Verburg FA, Luster M, Cupini C, Chiovato L, Duntas L, Elisei R, et al. 2013; Implications of thyroglobulin antibody positivity in patients with differentiated thyroid cancer: a clinical position statement. Thyroid. 23(10):1211–25. DOI: 10.1089/thy.2012.0606. PMID: 23692026.
Article
100. Spencer CA, Takeuchi M, Kazarosyan M, Wang CC, Guttler RB, Singer PA, et al. 1998; Serum thyroglobulin autoantibodies: prevalence, influence on serum thyroglobulin measurement, and prognostic significance in patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab. 83(4):1121–7. DOI: 10.1210/jc.83.4.1121. PMID: 9543128.
Article
101. Chiovato L, Latrofa F, Braverman LE, Pacini F, Capezzone M, Masserini L, et al. 2003; Disappearance of humoral thyroid autoimmunity after complete removal of thyroid antigens. Ann Intern Med. 139(5 Pt 1):346–51. DOI: 10.7326/0003-4819-139-5_Part_1-200309020-00010. PMID: 12965943.
Article
102. Thomas D, Liakos V, Vassiliou E, Hatzimarkou F, Tsatsoulis A, Kaldrimides P. 2007; Possible reasons for different pattern disappearance of thyroglobulin and thyroid peroxidase autoantibodies in patients with differentiated thyroid carcinoma following total thyroidectomy and iodine-131 ablation. J Endocrinol Invest. 30(3):173–80. DOI: 10.1007/BF03347421. PMID: 17505148.
Article
103. Chung JK, Park YJ, Kim TY, So Y, Kim SK, Park DJ, et al. 2002; Clinical significance of elevated level of serum antithyroglobulin antibody in patients with differentiated thyroid cancer after thyroid ablation. Clin Endocrinol (Oxf). 57(2):215–21. DOI: 10.1046/j.1365-2265.2002.01592.x. PMID: 12153600.
Article
104. Adil A, Jafri RA, Waqar A, Abbasi SA, Matiul H, Asghar AH, et al. 2003; Frequency and clinical importance of anti-Tg auto-antibodies (ATG). J Coll Physicians Surg Pak. 13(9):504–6.
105. Lee ZJO, Eslick GD, Edirimanne S. 2020; Investigating antithyroglobulin antibody as a prognostic marker for differentiated thyroid cancer: a meta-analysis and systematic review. Thyroid. 30(11):1601–12. DOI: 10.1089/thy.2019.0368. PMID: 32345152.
Article
106. Webb RC, Howard RS, Stojadinovic A, Gaitonde DY, Wallace MK, Ahmed J, et al. 2012; The utility of serum thyroglobulin measurement at the time of remnant ablation for predicting disease-free status in patients with differentiated thyroid cancer: a meta-analysis involving 3947 patients. J Clin Endocrinol Metab. 97(8):2754–63. DOI: 10.1210/jc.2012-1533. PMID: 22639291.
Article
107. Eustatia-Rutten CF, Smit JW, Romijn JA, van der Kleij-Corssmit EP, Pereira AM, Stokkel MP, et al. 2004; Diagnostic value of serum thyroglobulin measurements in the follow-up of differentiated thyroid carcinoma, a structured meta-analysis. Clin Endocrinol (Oxf). 61(1):61–74. DOI: 10.1111/j.1365-2265.2004.02060.x. PMID: 15212646.
Article
108. Schlumberger M, Berg G, Cohen O, Duntas L, Jamar F, Jarzab B, et al. 2004; Follow-up of low-risk patients with differentiated thyroid carcinoma: a European perspective. Eur J Endocrinol. 150(2):105–12. DOI: 10.1530/eje.0.1500105. PMID: 14763906.
Article
109. Bachelot A, Leboulleux S, Baudin E, Hartl DM, Caillou B, Travagli JP, et al. 2005; Neck recurrence from thyroid carcinoma: serum thyroglobulin and high-dose total body scan are not reliable criteria for cure after radioiodine treatment. Clin Endocrinol (Oxf). 62(3):376–9. DOI: 10.1111/j.1365-2265.2005.02228.x. PMID: 15730423.
Article
110. Giovanella L, Suriano S, Ceriani L, Verburg FA. 2011; Undetectable thyroglobulin in patients with differentiated thyroid carcinoma and residual radioiodine uptake on a postablation whole-body scan. Clin Nucl Med. 36(2):109–12. DOI: 10.1097/RLU.0b013e318203bb84. PMID: 21220971.
Article
111. Cherk MH, Francis P, Topliss DJ, Bailey M, Kalff V. 2012; Incidence and implications of negative serum thyroglobulin but positive I-131 whole-body scans in patients with well- differentiated thyroid cancer prepared with rhTSH or thyroid hormone withdrawal. Clin Endocrinol (Oxf). 76(5):734–40. DOI: 10.1111/j.1365-2265.2011.04278.x. PMID: 22050475.
112. Torlontano M, Crocetti U, Augello G, D'Aloiso L, Bonfitto N, Varraso A, et al. 2006; Comparative evaluation of recombinant human thyrotropin-stimulated thyroglobulin levels, 131I whole-body scintigraphy, and neck ultrasonography in the follow-up of patients with papillary thyroid microcarcinoma who have not undergone radioiodine therapy. J Clin Endocrinol Metab. 91(1):60–3. DOI: 10.1210/jc.2005-1185. PMID: 16219716.
113. Pacini F, Agate L, Elisei R, Capezzone M, Ceccarelli C, Lippi F, et al. 2001; Outcome of differentiated thyroid cancer with detectable serum Tg and negative diagnostic (131)I whole body scan: comparison of patients treated with high (131)I activities versus untreated patients. J Clin Endocrinol Metab. 86(9):4092–7. DOI: 10.1210/jcem.86.9.7831. PMID: 11549631.
Article
114. Frasoldati A, Pesenti M, Gallo M, Caroggio A, Salvo D, Valcavi R. 2003; Diagnosis of neck recurrences in patients with differentiated thyroid carcinoma. Cancer. 97(1):90–6. DOI: 10.1002/cncr.11031. PMID: 12491509.
Article
115. Castagna MG, Brilli L, Pilli T, Montanaro A, Cipri C, Fioravanti C, et al. 2008; Limited value of repeat recombinant human thyrotropin (rhTSH)-stimulated thyroglobulin testing in differentiated thyroid carcinoma patients with previous negative rhTSH-stimulated thyroglobulin and undetectable basal serum thyroglobulin levels. J Clin Endocrinol Metab. 93(1):76–81. DOI: 10.1210/jc.2007-1404. PMID: 17971424.
Article
116. Kloos RT, Mazzaferri EL. 2005; A single recombinant human thyrotropin-stimulated serum thyroglobulin measurement predicts differentiated thyroid carcinoma metastases three to five years later. J Clin Endocrinol Metab. 90(9):5047–57. DOI: 10.1210/jc.2005-0492. PMID: 15972576.
Article
117. Klubo-Gwiezdzinska J, Burman KD, Van Nostrand D, Wartofsky L. 2011; Does an undetectable rhTSH-stimulated Tg level 12 months after initial treatment of thyroid cancer indicate remission? Clin Endocrinol (Oxf). 74(1):111–7. DOI: 10.1111/j.1365-2265.2010.03898.x. PMID: 21054476.
118. Diaz-Soto G, Puig-Domingo M, Martinez-Pino I, Martinez de Osaba MJ, Mora M, Rivera-Fillat F, et al. 2011; Do thyroid cancer patients with basal undetectable Tg measured by current immunoassays require rhTSH testing? Exp Clin Endocrinol Diabetes. 119(6):348–52. DOI: 10.1055/s-0030-1269881. PMID: 21264807.
Article
119. Castagna MG, Tala Jury HP, Cipri C, Belardini V, Fioravanti C, Pasqui L, et al. 2011; The use of ultrasensitive thyroglobulin assays reduces but does not abolish the need for TSH stimulation in patients with differentiated thyroid carcinoma. J Endocrinol Invest. 34(8):e219–23.
120. Nascimento C, Borget I, Al Ghuzlan A, Deandreis D, Chami L, Travagli JP, et al. 2011; Persistent disease and recurrence in differentiated thyroid cancer patients with undetectable postoperative stimulated thyroglobulin level. Endocr Relat Cancer. 18(2):R29–40. DOI: 10.1677/ERC-10-0292. PMID: 21183629.
Article
121. Padovani RP, Robenshtok E, Brokhin M, Tuttle RM. 2012; Even without additional therapy, serum thyroglobulin concentrations often decline for years after total thyroidectomy and radioactive remnant ablation in patients with differentiated thyroid cancer. Thyroid. 22(8):778–83. DOI: 10.1089/thy.2011.0522. PMID: 22780333.
Article
122. Mazzaferri EL, Robbins RJ, Spencer CA, Braverman LE, Pacini F, Wartofsky L, et al. 2003; A consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma. J Clin Endocrinol Metab. 88(4):1433–41. DOI: 10.1210/jc.2002-021702. PMID: 12679418.
Article
123. Haugen BR, Pacini F, Reiners C, Schlumberger M, Ladenson PW, Sherman SI, et al. 1999; A comparison of recombinant human thyrotropin and thyroid hormone withdrawal for the detection of thyroid remnant or cancer. J Clin Endocrinol Metab. 84(11):3877–85. DOI: 10.1210/jc.84.11.3877. PMID: 10566623.
Article
124. David A, Blotta A, Bondanelli M, Rossi R, Roti E, Braverman LE, et al. 2001; Serum thyroglobulin concentrations and (131)I whole-body scan results in patients with differentiated thyroid carcinoma after administration of recombinant human thyroid-stimulating hormone. J Nucl Med. 42(10):1470–5.
125. Mazzaferri EL, Kloos RT. 2002; Is diagnostic iodine-131 scanning with recombinant human TSH useful in the follow-up of differentiated thyroid cancer after thyroid ablation? J Clin Endocrinol Metab. 87(4):1490–8. DOI: 10.1210/jcem.87.4.8338. PMID: 11932270.
Article
126. Haugen BR, Ridgway EC, McLaughlin BA, McDermott MT. 2002; Clinical comparison of whole-body radioiodine scan and serum thyroglobulin after stimulation with recombinant human thyrotropin. Thyroid. 12(1):37–43. DOI: 10.1089/105072502753451959. PMID: 11838729.
Article
127. Lima N, Cavaliere H, Tomimori E, Knobel M, Medeiros- Neto G. 2002; Prognostic value of serial serum thyroglobulin determinations after total thyroidectomy for differentiated thyroid cancer. J Endocrinol Invest. 25(2):110–5. DOI: 10.1007/BF03343973. PMID: 11929080.
Article
128. Wartofsky L. rhTSH-Stimulated Thyroglobulin Study Group. 2002; Management of low-risk well-differentiated thyroid cancer based only on thyroglobulin measurement after recombinant human thyrotropin. Thyroid. 12(7):583–90. DOI: 10.1089/105072502320288438. PMID: 12193302.
Article
129. Durante C, Montesano T, Attard M, Torlontano M, Monzani F, Costante G, et al. 2012; Long-term surveillance of papillary thyroid cancer patients who do not undergo postoperative radioiodine remnant ablation: is there a role for serum thyroglobulin measurement? J Clin Endocrinol Metab. 97(8):2748–53. DOI: 10.1210/jc.2012-1123. PMID: 22679061.
Article
130. Giovanella L, Ceriani L, Garo ML. 2022; Is thyroglobulin a reliable biomarker of differentiated thyroid cancer in patients treated by lobectomy? A systematic review and meta-analysis. Clin Chem Lab Med. 60(7):1091–100. DOI: 10.1515/cclm-2022-0154. PMID: 35475431.
Article
131. Ullmann TM, Papaleontiou M, Sosa JA. 2023; Current controversies in low-risk differentiated thyroid cancer: reducing overtreatment in an era of overdiagnosis. J Clin Endocrinol Metab. 108(2):271–80. DOI: 10.1210/clinem/dgac646. PMID: 36327392. PMCID: PMC10091361.
Article
132. Rosario PW, Cortes MCS, Franco Mourao G. 2021; Follow-up of patients with thyroid cancer and antithyroglobulin antibodies: a review for clinicians. Endocr Relat Cancer. 28(4):R111–R9. DOI: 10.1530/ERC-21-0012. PMID: 33690160.
Article
133. American Institute of Ultrasound in Medicine. 2003; AIUM Practice Guideline for the performance of thyroid and parathyroid ultrasound examination. J Ultrasound Med. 22(10):1126–30. DOI: 10.7863/jum.2003.22.10.1126. PMID: 14606572.
134. Lee JY, Baek JH, Ha EJ, Sung JY, Shin JH, Kim JH, et al. 2021; 2020 imaging guidelines for thyroid nodules and differentiated thyroid cancer: Korean Society of Thyroid Radiology. Korean J Radiol. 22(5):840–60. DOI: 10.3348/kjr.2020.0578. PMID: 33660459. PMCID: PMC8076832.
Article
135. Yeh MW, Bauer AJ, Bernet VA, Ferris RL, Loevner LA, Mandel SJ, et al. 2015; American Thyroid Association statement on preoperative imaging for thyroid cancer surgery. Thyroid. 25(1):3–14. DOI: 10.1089/thy.2014.0096. PMID: 25188202. PMCID: PMC5248547.
Article
136. Lepoutre-Lussey C, Maddah D, Golmard JL, Russ G, Tissier F, Tresallet C, et al. 2014; Post-operative neck ultrasound and risk stratification in differentiated thyroid cancer patients with initial lymph node involvement. Eur J Endocrinol. 170(6):837–46. DOI: 10.1530/EJE-13-0888. PMID: 24659355.
Article
137. Jiang HJ, Wu CW, Chiang FY, Chiou HC, Chen IJ, Hsiao PJ. 2018; Reliable sonographic features for nodal thyroglobulin to diagnose recurrent lymph node metastasis from papillary thyroid carcinoma. Clin Otolaryngol. 43(4):1065–72. DOI: 10.1111/coa.13103. PMID: 29575557.
Article
138. Hoang JK, Oldan JD, Mandel SJ, Policeni B, Agarwal V, et al. Expert Panel on Neurological Imaging. 2019; ACR Appropriateness Criteria((R)) thyroid disease. J Am Coll Radiol. 16(5S):S300–S14. DOI: 10.1016/j.jacr.2019.02.004. PMID: 31054756.
139. Perros P, Boelaert K, Colley S, Evans C, Evans RM, Gerrard Ba G, et al. 2014; Guidelines for the management of thyroid cancer. Clin Endocrinol (Oxf). 81 Suppl 1:1–122. DOI: 10.1111/cen.12515. PMID: 24989897.
Article
140. Leenhardt L, Erdogan MF, Hegedus L, Mandel SJ, Paschke R, Rago T, et al. 2013; 2013 European Thyroid Association guidelines for cervical ultrasound scan and ultrasound-guided techniques in the postoperative management of patients with thyroid cancer. Eur Thyroid J. 2(3):147–59. DOI: 10.1159/000354537. PMID: 24847448. PMCID: PMC4017749.
Article
141. Yoo RE, Kim JH, Bae JM, Hwang I, Kang KM, Yun TJ, et al. 2020; Ultrasonographic indeterminate lymph nodes in preoperative thyroid cancer patients: malignancy risk and ultrasonographic findings predictive of malignancy. Korean J Radiol. 21(5):598–604. DOI: 10.3348/kjr.2019.0755. PMID: 32323505. PMCID: PMC7183832.
Article
142. Leboulleux S, Girard E, Rose M, Travagli JP, Sabbah N, Caillou B, et al. 2007; Ultrasound criteria of malignancy for cervical lymph nodes in patients followed up for differentiated thyroid cancer. J Clin Endocrinol Metab. 92(9):3590–4. DOI: 10.1210/jc.2007-0444. PMID: 17609301.
Article
143. Park JS, Son KR, Na DG, Kim E, Kim S. 2009; Performance of preoperative sonographic staging of papillary thyroid carcinoma based on the sixth edition of the AJCC/UICC TNM classification system. AJR Am J Roentgenol. 192(1):66–72. DOI: 10.2214/AJR.07.3731. PMID: 19098181.
Article
144. Rosario PW, de Faria S, Bicalho L, Alves MF, Borges MA, Purisch S, et al. 2005; Ultrasonographic differentiation between metastatic and benign lymph nodes in patients with papillary thyroid carcinoma. J Ultrasound Med. 24(10):1385–9. DOI: 10.7863/jum.2005.24.10.1385. PMID: 16179622.
Article
145. Sohn YM, Kwak JY, Kim EK, Moon HJ, Kim SJ, Kim MJ. 2010; Diagnostic approach for evaluation of lymph node metastasis from thyroid cancer using ultrasound and fine-needle aspiration biopsy. AJR Am J Roentgenol. 194(1):38–43. DOI: 10.2214/AJR.09.3128. PMID: 20028903.
Article
146. Chung SR, Baek JH, Rho YH, Choi YJ, Sung TY, Song DE, et al. 2022; Sonographic diagnosis of cervical lymph node metastasis in patients with thyroid cancer and comparison of European and Korean guidelines for stratifying the risk of malignant lymph node. Korean J Radiol. 23(11):1102–11. DOI: 10.3348/kjr.2022.0358. PMID: 36126955. PMCID: PMC9614289.
Article
147. Lee JY, Yoo RE, Rhim JH, Lee KH, Choi KS, Hwang I, et al. 2022; Validation of ultrasound risk stratification systems for cervical lymph node metastasis in patients with thyroid cancer. Cancers (Basel). 14(9):2106. DOI: 10.3390/cancers14092106. PMID: 35565235. PMCID: PMC9105025.
Article
148. Hahn SY, Shin JH, Han BK, Ko EY, Kang SS, Chung JH, et al. 2011; Predictive factors related to the recurrence at US-guided fine needle aspiration in postoperative patients with differentiated thyroid cancer. Clin Endocrinol (Oxf). 74(2):270–5. DOI: 10.1111/j.1365-2265.2010.03915.x. PMID: 21044120.
Article
149. Lee JH, Lee HK, Lee DH, Choi CG, Gong G, Shong YK, et al. 2007; Ultrasonographic findings of a newly detected nodule on the thyroid bed in postoperative patients for thyroid carcinoma: correlation with the results of ultrasonography-guided fine- needle aspiration biopsy. Clin Imaging. 31(2):109–13. DOI: 10.1016/j.clinimag.2006.11.001. PMID: 17320777.
150. Frates MC, Parziale MP, Alexander EK, Barletta JA, Benson CB. 2021; Role of sonographic characteristics of thyroid bed lesions identified following thyroidectomy in the diagnosis or exclusion of recurrent cancer. Radiology. 299(2):374–80. DOI: 10.1148/radiol.2021201596. PMID: 33650902.
Article
151. Ha EJ, Chung SR, Na DG, Ahn HS, Chung J, Lee JY, et al. 2021; 2021 Korean Thyroid Imaging Reporting and Data System and imaging-based management of thyroid nodules: Korean Society of Thyroid Radiology consensus statement and recommendations. Korean J Radiol. 22(12):2094–123. DOI: 10.3348/kjr.2021.0713. PMID: 34719893. PMCID: PMC8628155.
Article
152. Lee JI, Chung YJ, Cho BY, Chong S, Seok JW, Park SJ. 2013; Postoperative-stimulated serum thyroglobulin measured at the time of 131I ablation is useful for the prediction of disease status in patients with differentiated thyroid carcinoma. Surgery. 153(6):828–35. DOI: 10.1016/j.surg.2012.12.008. PMID: 23489940.
Article
153. Pacini F, Basolo F, Bellantone R, Boni G, Cannizzaro MA, De Palma M, et al. 2018; Italian consensus on diagnosis and treatment of differentiated thyroid cancer: joint statements of six Italian societies. J Endocrinol Invest. 41(7):849–76. DOI: 10.1007/s40618-018-0884-2. PMID: 29729004.
Article
154. Lee SG, Lee WK, Lee HS, Moon J, Lee CR, Kang SW, et al. 2017; Practical performance of the 2015 American Thyroid Association guidelines for predicting tumor recurrence in patients with papillary thyroid cancer in South Korea. Thyroid. 27(2):174–81. DOI: 10.1089/thy.2016.0252. PMID: 27750028.
Article
155. Rondeau G, Fish S, Hann LE, Fagin JA, Tuttle RM. 2011; Ultrasonographically detected small thyroid bed nodules identified after total thyroidectomy for differentiated thyroid cancer seldom show clinically significant structural progression. Thyroid. 21(8):845–53. DOI: 10.1089/thy.2011.0011. PMID: 21809914. PMCID: PMC6916526.
Article
156. Robenshtok E, Fish S, Bach A, Dominguez JM, Shaha A, Tuttle RM. 2012; Suspicious cervical lymph nodes detected after thyroidectomy for papillary thyroid cancer usually remain stable over years in properly selected patients. J Clin Endocrinol Metab. 97(8):2706–13. DOI: 10.1210/jc.2012-1553. PMID: 22639292.
Article
157. Chung SR, Baek JH, Choi YJ, Sung TY, Song DE, Kim TY, et al. 2021; Diagnostic algorithm for metastatic lymph nodes of differentiated thyroid carcinoma. Cancers (Basel). 13(6):1338. DOI: 10.3390/cancers13061338. PMID: 33809585. PMCID: PMC8000218.
Article
158. Moon JH, Kim YI, Lim JA, Choi HS, Cho SW, Kim KW, et al. 2013; Thyroglobulin in washout fluid from lymph node fine- needle aspiration biopsy in papillary thyroid cancer: large-scale validation of the cutoff value to determine malignancy and evaluation of discrepant results. J Clin Endocrinol Metab. 98(3):1061–8. DOI: 10.1210/jc.2012-3291. PMID: 23393171.
159. Kim MJ, Kim EK, Kim BM, Kwak JY, Lee EJ, Park CS, et al. 2009; Thyroglobulin measurement in fine-needle aspirate washouts: the criteria for neck node dissection for patients with thyroid cancer. Clin Endocrinol (Oxf). 70(1):145–51. DOI: 10.1111/j.1365-2265.2008.03297.x. PMID: 18466347.
Article
160. Xu Y, Wu D, Wu W, Jiang J, Xi C, Ye N, et al. 2019; Diagnostic value of cytology, thyroglobulin, and combination of them in fine-needle aspiration of metastatic lymph nodes in patients with differentiated thyroid cancer: a systematic review and network meta-analysis. Medicine (Baltimore). 98(45):e17859. DOI: 10.1097/MD.0000000000017859. PMID: 31702649. PMCID: PMC6855606.
161. Sun J, Li P, Chen X, Yu Q, Li L. 2022; The influence of thyroid status, serum Tg, TSH, and TgAb on FNA-Tg in cervical metastatic lymph nodes of papillary thyroid carcinoma. Laryngoscope Investig Otolaryngol. 7(1):274–82. DOI: 10.1002/lio2.717. PMID: 35155808. PMCID: PMC8823256.
162. Boi F, Baghino G, Atzeni F, Lai ML, Faa G, Mariotti S. 2006; The diagnostic value for differentiated thyroid carcinoma metastases of thyroglobulin (Tg) measurement in washout fluid from fine-needle aspiration biopsy of neck lymph nodes is maintained in the presence of circulating anti-Tg antibodies. J Clin Endocrinol Metab. 91(4):1364–9. DOI: 10.1210/jc.2005-1705. PMID: 16434461.
Article
163. Duval M, Zanella AB, Cristo AP, Faccin CS, Graudenz MS, Maia AL. 2017; Impact of serum TSH and anti-thyroglobulin antibody levels on lymph node fine-needle aspiration thyroglobulin measurements in differentiated thyroid cancer patients. Eur Thyroid J. 6(6):292–7. DOI: 10.1159/000479682. PMID: 29234622. PMCID: PMC5704678.
Article
164. Snozek CL, Chambers EP, Reading CC, Sebo TJ, Sistrunk JW, Singh RJ, et al. 2007; Serum thyroglobulin, high-resolution ultrasound, and lymph node thyroglobulin in diagnosis of differentiated thyroid carcinoma nodal metastases. J Clin Endocrinol Metab. 92(11):4278–81. DOI: 10.1210/jc.2007-1075. PMID: 17684045.
Article
165. Uruno T, Miyauchi A, Shimizu K, Tomoda C, Takamura Y, Ito Y, et al. 2005; Usefulness of thyroglobulin measurement in fine-needle aspiration biopsy specimens for diagnosing cervical lymph node metastasis in patients with papillary thyroid cancer. World J Surg. 29(4):483–5. DOI: 10.1007/s00268-004-7701-0. PMID: 15776292.
Article
166. Sigstad E, Heilo A, Paus E, Holgersen K, Groholt KK, Jorgensen LH, et al. 2007; The usefulness of detecting thyroglobulin in fine-needle aspirates from patients with neck lesions using a sensitive thyroglobulin assay. Diagn Cytopathol. 35(12):761–7. DOI: 10.1002/dc.20726. PMID: 18008339.
Article
167. Grani G, Fumarola A. 2014; Thyroglobulin in lymph node fine-needle aspiration washout: a systematic review and meta-analysis of diagnostic accuracy. J Clin Endocrinol Metab. 99(6):1970–82. DOI: 10.1210/jc.2014-1098. PMID: 24617715.
Article
168. Torres MR, Nobrega Neto SH, Rosas RJ, Martins AL, Ramos AL, da Cruz TR. 2014; Thyroglobulin in the washout fluid of lymph-node biopsy: what is its role in the follow-up of differentiated thyroid carcinoma? Thyroid. 24(1):7–18. DOI: 10.1089/thy.2013.0244. PMID: 24044517.
Article
169. Baloch ZW, Barroeta JE, Walsh J, Gupta PK, Livolsi VA, Langer JE, et al. 2008; Utility of thyroglobulin measurement in fine-needle aspiration biopsy specimens of lymph nodes in the diagnosis of recurrent thyroid carcinoma. Cytojournal. 5:1. DOI: 10.1186/1742-6413-5-1. PMID: 18237420. PMCID: PMC2276229.
Article
170. Borel AL, Boizel R, Faure P, Barbe G, Boutonnat J, Sturm N, et al. 2008; Significance of low levels of thyroglobulin in fine needle aspirates from cervical lymph nodes of patients with a history of differentiated thyroid cancer. Eur J Endocrinol. 158(5):691–8. DOI: 10.1530/EJE-07-0749. PMID: 18426828.
Article
171. Baldini E, Sorrenti S, Di Gioia C, De Vito C, Antonelli A, Gnessi L, et al. 2013; Cervical lymph node metastases from thyroid cancer: does thyroglobulin and calcitonin measurement in fine needle aspirates improve the diagnostic value of cytology? BMC Clin Pathol. 13:7. DOI: 10.1186/1472-6890-13-7. PMID: 23421519. PMCID: PMC3583740.
Article
172. Park JY, Choi W, Hong AR, Yoon JH, Kim HK, Kang HC. 2023; A comprehensive assessment of the harms of fine-needle aspiration biopsy for thyroid nodules: a systematic review. Endocrinol Metab (Seoul). 38(1):104–16. DOI: 10.3803/EnM.2023.1669. PMID: 36891657. PMCID: PMC10008658.
Article
173. Schleder S, Jung EM, Schicho A, Schreyer AG, Habicher W, Grassinger J, et al. 2023; Efficacy and safety of ultrasound-guided core needle biopsies (US-CNBs) in cervical lymphadenopathy in patients with suspected head and neck cancer during the COVID-19 pandemic. Clin Hemorheol Microcirc. 83(4):397–408. DOI: 10.3233/CH-221680. PMID: 36683499.
Article
174. Assaf N, Nassif S, Tamim H, Bazarbachi A, Zaatari G, Chakhachiro Z. 2020; Diagnosing lymphoproliferative disorders using core needle biopsy versus surgical excisional biopsy: three-year experience of a reference center in Lebanon. Clin Lymphoma Myeloma Leuk. 20(8):e455–e60. DOI: 10.1016/j.clml.2019.11.013. PMID: 32461041.
Article
175. Allin D, David S, Jacob A, Mir N, Giles A, Gibbins N. 2017; Use of core biopsy in diagnosing cervical lymphadenopathy: a viable alternative to surgical excisional biopsy of lymph nodes? Ann R Coll Surg Engl. 99(3):242–4. DOI: 10.1308/rcsann.2016.0353. PMID: 27917669. PMCID: PMC5450284.
Article
176. Teng D, Dong C, Sun D, Liu Z, Wang H. 2021; Comparison of ultrasound-guided core needle biopsy under the assistance of hydrodissection with fine needle aspiration in the diagnosis of high-risk cervical lymph nodes: a randomized controlled trial. Front Oncol. 11:799956. DOI: 10.3389/fonc.2021.799956. PMID: 35096601. PMCID: PMC8793772.
Article
177. Jeong SY, Baek JH, Chung SR, Choi YJ, Song DE, Chung KW, et al. 2022; Diagnostic performance of core needle biopsy for characterizing thyroidectomy bed lesions. Korean J Radiol. 23(10):1019–27. DOI: 10.3348/kjr.2021.0772. PMID: 36098339. PMCID: PMC9523230.
Article
178. Lee MK, Baek JH, Chung SR, Choi YJ, Lee JH, Jung SL. 2022; Radiofrequency ablation of recurrent thyroid cancers: anatomy- based management. Ultrasonography. 41(3):434–43. DOI: 10.14366/usg.21221. PMID: 35189056. PMCID: PMC9262676.
Article
179. Lee JY, Kim JH, Yeon EK, Hwang I, Yoo RE, Kang KM, et al. 2022; Computed tomography complements ultrasound for the differential diagnosis of traumatic neuroma from recurrent tumor in patients with postoperative thyroid cancer. Eur Radiol. 32(4):2760–8. DOI: 10.1007/s00330-021-08321-x. PMID: 34665316.
Article
180. Wang JC, Takashima S, Takayama F, Kawakami S, Saito A, Matsushita T, et al. 2001; Tracheal invasion by thyroid carcinoma: prediction using MR imaging. AJR Am J Roentgenol. 177(4):929–36. DOI: 10.2214/ajr.177.4.1770929. PMID: 11566708.
181. Pacini F, Capezzone M, Elisei R, Ceccarelli C, Taddei D, Pinchera A. 2002; Diagnostic 131-iodine whole-body scan may be avoided in thyroid cancer patients who have undetectable stimulated serum Tg levels after initial treatment. J Clin Endocrinol Metab. 87(4):1499–501. DOI: 10.1210/jcem.87.4.8274. PMID: 11932271.
Article
182. Torlontano M, Crocetti U, D'Aloiso L, Bonfitto N, Di Giorgio A, Modoni S, et al. 2003; Serum thyroglobulin and 131I whole body scan after recombinant human TSH stimulation in the follow-up of low-risk patients with differentiated thyroid cancer. Eur J Endocrinol. 148(1):19–24. DOI: 10.1530/eje.0.1480019. PMID: 12534353.
Article
183. Xue YL, Qiu ZL, Song HJ, Luo QY. 2013; Value of 131I SPECT/CT for the evaluation of differentiated thyroid cancer: a systematic review of the literature. Eur J Nucl Med Mol Imaging. 40(5):768–78. DOI: 10.1007/s00259-012-2310-x. PMID: 23242250.
Article
184. Chong A, Seo Y, Bang JI, Park S, Kim K, Hong CM, et al. 2024; Clinical implications of adding SPECT/CT to radioiodine whole-body scan in patients with differentiated thyroid cancer: a systematic review and meta-analysis. Clin Nucl Med. 49(3):215–25. DOI: 10.1097/RLU.0000000000004953. PMID: 38048517.
Article
185. Sahin M, Aydogan BI, Ozkan E, Emral R, Gullu S, Erdogan MF, et al. 2021; Recombinant human thyrotropin versus thyroid hormone withdrawal in differentiated thyroid carcinoma follow-up: a single center experience. Acta Endocrinol (Buchar). 17(3):337–45. DOI: 10.4183/aeb.2021.337. PMID: 35342477. PMCID: PMC8919477.
Article
186. Liepe K. 2015; Sensitivity of preparation with rhTSH or thyroid hormone withdrawal using 131I-whole body scans to identify metastases of differentiated thyroid cancer. Int J Surg. 16(Pt A):107–12. DOI: 10.1016/j.ijsu.2015.02.016. PMID: 25771100.
187. Qichang W, Lin B, Gege Z, Youjia Z, Qingjie M, Renjie W, et al. 2019; Diagnostic performance of 18F-FDG-PET/CT in DTC patients with thyroglobulin elevation and negative iodine scintigraphy: a meta-analysis. Eur J Endocrinol. 181(2):93–102. DOI: 10.1530/EJE-19-0261. PMID: 31117054.
Article
188. Dong MJ, Liu ZF, Zhao K, Ruan LX, Wang GL, Yang SY, et al. 2009; Value of 18F-FDG-PET/PET-CT in differentiated thyroid carcinoma with radioiodine-negative whole-body scan: a meta-analysis. Nucl Med Commun. 30(8):639–50. DOI: 10.1097/MNM.0b013e32832dcfa7. PMID: 19512954.
Article
189. Caetano R, Bastos CR, de Oliveira IA, da Silva RM, Fortes CP, Pepe VL, et al. 2016; Accuracy of positron emission tomography and positron emission tomography-CT in the detection of differentiated thyroid cancer recurrence with negative (131) I whole-body scan results: a meta-analysis. Head Neck. 38(2):316–27. DOI: 10.1002/hed.23881. PMID: 25251544.
Article
190. Treglia G, Annunziata S, Muoio B, Salvatori M, Ceriani L, Giovanella L. 2013; The role of fluorine-18-fluorodeoxyglucose positron emission tomography in aggressive histological subtypes of thyroid cancer: an overview. Int J Endocrinol. 2013:856189. DOI: 10.1155/2013/856189. PMID: 23653645. PMCID: PMC3638656.
Article
191. Zampella E, Klain M, Pace L, Cuocolo A. 2021; PET/CT in the management of differentiated thyroid cancer. Diagn Interv Imaging. 102(9):515–23. DOI: 10.1016/j.diii.2021.04.004. PMID: 33926848.
Article
192. Cracolici V. 2023; No longer well-differentiated: diagnostic criteria and clinical importance of poorly differentiated/high-grade thyroid carcinoma. Surg Pathol Clin. 16(1):45–56. DOI: 10.1016/j.path.2022.09.006. PMID: 36739166.
193. Ma C, Xie J, Lou Y, Gao Y, Zuo S, Wang X. 2010; The role of TSH for 18F-FDG-PET in the diagnosis of recurrence and metastases of differentiated thyroid carcinoma with elevated thyroglobulin and negative scan: a meta-analysis. Eur J Endocrinol. 163(2):177–83. DOI: 10.1530/EJE-10-0256. PMID: 20484385.
Article
194. Bang JI, Park S, Kim K, Seo Y, Chong A, Hong CM, et al. 2023; The diagnostic value of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography in differentiated thyroid cancer patients with elevated thyroglobulin/thyroglobulin antibody levels and negative iodine scintigraphy: a systematic review and meta-analysis. Thyroid. 33(10):1224–36. DOI: 10.1089/thy.2023.0264. PMID: 37597200.
195. Bannas P, Derlin T, Groth M, Apostolova I, Adam G, Mester J, et al. 2012; Can (18)F-FDG-PET/CT be generally recommended in patients with differentiated thyroid carcinoma and elevated thyroglobulin levels but negative I-131 whole body scan? Ann Nucl Med. 26(1):77–85. DOI: 10.1007/s12149-011-0545-4. PMID: 22006540.
Article
196. Choi SJ, Jung KP, Lee SS, Park YS, Lee SM, Bae SK. 2016; Clinical usefulness of F-18 FDG PET/CT in papillary thyroid cancer with negative radioiodine scan and elevated thyroglobulin level or positive anti-thyroglobulin antibody. Nucl Med Mol Imaging. 50(2):130–6. DOI: 10.1007/s13139-015-0378-5. PMID: 27275361. PMCID: PMC4870461.
Article
197. Ozdemir E, Yildirim Poyraz N, Polat SB, Turkolmez S, Ersoy R, Cakir B. 2014; Diagnostic value of 18F-FDG PET/CT in patients with TENIS syndrome: correlation with thyroglobulin levels. Ann Nucl Med. 28(3):241–7. DOI: 10.1007/s12149-013-0801-x. PMID: 24379008.
Article
198. Filippi L, Frantellizzi V, Monari F, Lodi Rizzini E, Tabacchi E, Pirisino R, et al. 2021; Usefulness of PET/CT with (18)F-FDG in patients with differentiated thyroid carcinoma after radioiodine therapy: an Italian multicenter study. Diagnostics (Basel). 11(7):1264. DOI: 10.3390/diagnostics11071264. PMID: 34359347. PMCID: PMC8306511.
Article
199. Wang H, Fu HL, Li JN, Zhou RJ, Hui Gu Z, Wu JC, et al. 2008; Comparison of whole-body 18F-FDG SPECT and posttherapeutic 131I scintigraphy in the detection of metastatic thyroid cancer. Clin Imaging. 32(1):32–7. DOI: 10.1016/j.clinimag.2007.07.010. PMID: 18164392.
Article
200. Kang SY, Bang JI, Kang KW, Lee HY, Chung JK. 2019; FDG PET/CT for the early prediction of RAI therapy response in patients with metastatic differentiated thyroid carcinoma. PLoS One. 14(6):e0218416. DOI: 10.1371/journal.pone.0218416. PMID: 31237886. PMCID: PMC6592523.
Article
201. Wang H, Dai H, Li Q, Shen G, Shi L, Tian R. 2021; Investigating (18)F-FDG PET/CT parameters as prognostic markers for differentiated thyroid cancer: a systematic review. Front Oncol. 11:648658. DOI: 10.3389/fonc.2021.648658. PMID: 34055616. PMCID: PMC8158293.
Article
202. Leboulleux S, El Bez I, Borget I, Elleuch M, Deandreis D, Al Ghuzlan A, et al. 2012; Postradioiodine treatment whole-body scan in the era of 18-fluorodeoxyglucose positron emission tomography for differentiated thyroid carcinoma with elevated serum thyroglobulin levels. Thyroid. 22(8):832–8. DOI: 10.1089/thy.2012.0081. PMID: 22853728.
Article
203. Valerio L, Guidoccio F, Giani C, Tardelli E, Puccini G, Puleo L, et al. 2021; [18F]-FDG-PET/CT correlates with the response of radiorefractory thyroid cancer to lenvatinib and patient survival. J Clin Endocrinol Metab. 106(8):2355–66. DOI: 10.1210/clinem/dgab278. PMID: 33901285.
Article
204. Grani G, Ramundo V, Falcone R, Lamartina L, Montesano T, Biffoni M, et al. 2019; Thyroid cancer patients with no evidence of disease: the need for repeat neck ultrasound. J Clin Endocrinol Metab. 104(11):4981–9. DOI: 10.1210/jc.2019-00962. PMID: 31206157.
Article
205. Torlontano M, Attard M, Crocetti U, Tumino S, Bruno R, Costante G, et al. 2004; Follow-up of low risk patients with papillary thyroid cancer: role of neck ultrasonography in detecting lymph node metastases. J Clin Endocrinol Metab. 89(7):3402–7. DOI: 10.1210/jc.2003-031521. PMID: 15240622.
Article
206. Matrone A, Gambale C, Piaggi P, Viola D, Giani C, Agate L, et al. 2017; Postoperative thyroglobulin and neck ultrasound in the risk restratification and decision to perform 131I ablation. J Clin Endocrinol Metab. 102(3):893–902. DOI: 10.1210/jc.2017-00617. PMID: 28482084.
207. Malandrino P, Tumino D, Russo M, Marescalco S, Fulco RA, Frasca F. 2019; Surveillance of patients with differentiated thyroid cancer and indeterminate response: a longitudinal study on basal thyroglobulin trend. J Endocrinol Invest. 42(10):1223–30. DOI: 10.1007/s40618-019-01044-3. PMID: 30963467.
Article
208. Tramontin MY, Nobre GM, Lopes M, Carneiro MP, Alves PAG, de Andrade FA, et al. 2021; High thyroglobulin and negative whole-body scan: no long-term benefit of empiric radioiodine therapy. Endocrine. 73(2):398–406. DOI: 10.1007/s12020-021-02647-8. PMID: 33570724.
Article
209. Yuan L, Wang J, Pan L, Feng H, Chen P, Luo J, et al. 2023; Outcome of patients with differentiated thyroid cancer treated with empirical radioiodine therapy on the basis of Thyroglobulin Elevation Negative Iodine Scintigraphy (TENIS) syndrome without structural disease: a retrospective cohort study. Ann Nucl Med. 37(1):18–25. DOI: 10.1007/s12149-022-01799-5. PMID: 36318362.
Article
Full Text Links
  • IJT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr