1. Huang H, Yan D, Liu W, Liu S, Xu Z, Wang X. 2022; Isthmectomy is effective and sufficient for selected patients with the isthmus-confined solitary papillary thyroid carcinoma. Asian J Surg. 45(9):1678–81. DOI:
10.1016/j.asjsur.2021.08.074. PMID:
35181211.
Article
2. Park H, Harries V, McGill MR, Ganly I, Shah JP. 2020; Isthmusectomy in selected patients with well-differentiated thyroid carcinoma. Head Neck. 42(1):43–9. DOI:
10.1002/hed.25968. PMID:
31589005. PMCID:
PMC7485011.
Article
3. Ali SZ, Baloch ZW, Cochand-Priollet B, Schmitt FC, Vielh P, VanderLaan PA. 2023; The 2023 Bethesda system for reporting thyroid cytopathology. Thyroid. 33(9):1039–44. DOI:
10.1089/thy.2023.0141. PMID:
37427847.
Article
4. Kim K, Bae JS, Kim JS, Jung SL, Jung CK. 2022; Diagnostic performance of thyroid core needle biopsy using the revised reporting system: comparison with fine needle aspiration cytology. Endocrinol Metab (Seoul). 37(1):159–69. DOI:
10.3803/EnM.2021.1299. PMID:
35255608. PMCID:
PMC8901962.
Article
5. Chung SR, Baek JH, Lee JH, Lee YM, Sung TY, Chung KW, et al. 2019; Risk of malignancy according to the sub- classification of atypia of undetermined significance and suspicious follicular neoplasm categories in thyroid core needle biopsies. Endocr Pathol. 30(2):146–54. DOI:
10.1007/s12022-019-9577-4. PMID:
31044350.
Article
6. Na HY, Woo JW, Moon JH, Choi JY, Jeong WJ, Kim YK, et al. 2019; Preoperative diagnostic categories of noninvasive follicular thyroid neoplasm with papillary-like nuclear features in thyroid core needle biopsy and its impact on risk of malignancy. Endocr Pathol. 30(4):329–39. DOI:
10.1007/s12022-019-09590-5. PMID:
31605276.
Article
7. Ali SZ, Baloch ZW, Cochand-Priollet B, Schmitt FC, Vielh P, VanderLaan PA. 2023; The 2023 Bethesda system for reporting thyroid cytopathology. J Am Soc Cytopathol. 12(5):319–25. DOI:
10.1016/j.jasc.2023.05.005. PMID:
37438235.
Article
8. Jung CK, Baek JH, Na DG, Oh YL, Yi KH, Kang HC. 2020; 2019 practice guidelines for thyroid core needle biopsy: a report of the Clinical Practice Guidelines Development Committee of the Korean Thyroid Association. J Pathol Transl Med. 54(1):64–86. DOI:
10.4132/jptm.2019.12.04. PMID:
31964112. PMCID:
PMC6986975.
Article
9. Park JY, Yi SY, Baek SH, Lee YH, Kwon HJ, Park HJ. 2022; Diagnostic efficacy, performance and safety of side-cut core needle biopsy for thyroid nodules: comparison of automated and semi-automated biopsy needles. Endocrine. 76(2):341–8. DOI:
10.1007/s12020-022-02980-6. PMID:
35032314.
Article
10. Ahn HS, Youn I, Na DG, Kim SJ, Lee MY. 2021; Diagnostic performance of core needle biopsy as a first-line diagnostic tool for thyroid nodules according to ultrasound patterns: comparison with fine needle aspiration using propensity score matching analysis. Clin Endocrinol (Oxf). 94(3):494–503. DOI:
10.1111/cen.14321. PMID:
32869866.
Article
11. Xiong Y, Yan L, Nong L, Zheng Y, Li T. 2019; Pathological diagnosis of thyroid nodules based on core needle biopsies: comparative study between core needle biopsies and resected specimens in 578 cases. Diagn Pathol. 14(1):10. DOI:
10.1186/s13000-019-0786-4. PMID:
30711008. PMCID:
PMC6359785.
Article
12. Ahn HS, Seo M, Ha SM, Kim HS. 2018; Comparison of the diagnostic efficacy of ultrasound-guided core needle biopsy with 18- versus 20-gauge needles for thyroid nodules. J Ultrasound Med. 37(11):2565–74. DOI:
10.1002/jum.14614. PMID:
29575135.
Article
13. Choe J, Baek JH, Park HS, Choi YJ, Lee JH. 2018; Core needle biopsy of thyroid nodules: outcomes and safety from a large single-center single-operator study. Acta Radiol. 59(8):924–31. DOI:
10.1177/0284185117741916. PMID:
29137498.
Article
14. Hong MJ, Na DG, Kim SJ, Kim DS. 2018; Role of core needle biopsy as a first-line diagnostic tool for thyroid nodules: a retrospective cohort study. Ultrasonography. 37(3):244–53. DOI:
10.14366/usg.17041. PMID:
29113031. PMCID:
PMC6044216.
Article
15. Kim HC, Kim YJ, Han HY, Yi JM, Baek JH, Park SY, et al. 2017; First-line use of core needle biopsy for high-yield preliminary diagnosis of thyroid nodules. AJNR Am J Neuroradiol. 38(2):357–63. DOI:
10.3174/ajnr.A5007. PMID:
27932508. PMCID:
PMC7963827.
Article
16. Suh CH, Baek JH, Choi YJ, Kim TY, Sung TY, Song DE, et al. 2017; Efficacy and safety of core-needle biopsy in initially detected thyroid nodules via propensity score analysis. Sci Rep. 7(1):8242. DOI:
10.1038/s41598-017-07924-z. PMID:
28811482. PMCID:
PMC5557918.
Article
17. Suh CH, Baek JH, Lee JH, Choi YJ, Kim JK, Sung TY, et al. 2016; The role of core-needle biopsy as a first-line diagnostic tool for initially detected thyroid nodules. Thyroid. 26(3):395–403. DOI:
10.1089/thy.2015.0404. PMID:
26651390.
Article
18. Kim YH, Kwon HJ, Kim EK, Kwak JY, Moon HJ, Yoon JH. 2015; Applying ultrasound-guided core needle biopsy for diagnosis of thyroid masses: preliminary results from a single institution. J Ultrasound Med. 34(10):1801–8. DOI:
10.7863/ultra.15.14.12028. PMID:
26324755.
19. Ha EJ, Baek JH, Lee JH, Kim JK, Kim JK, Lim HK, et al. 2014; Core needle biopsy can minimise the non-diagnostic results and need for diagnostic surgery in patients with calcified thyroid nodules. Eur Radiol. 24(6):1403–9. DOI:
10.1007/s00330-014-3123-z. PMID:
24604217.
Article
20. Ha EJ, Baek JH, Lee JH, Song DE, Kim JK, Shong YK, et al. 2013; Sonographically suspicious thyroid nodules with initially benign cytologic results: the role of a core needle biopsy. Thyroid. 23(6):703–8. DOI:
10.1089/thy.2012.0426. PMID:
23544697.
Article
21. Sung JY, Na DG, Kim KS, Yoo H, Lee H, Kim JH, et al. 2012; Diagnostic accuracy of fine-needle aspiration versus core-needle biopsy for the diagnosis of thyroid malignancy in a clinical cohort. Eur Radiol. 22(7):1564–72. DOI:
10.1007/s00330-012-2405-6. PMID:
22415411.
Article
22. Joo L, Na DG, Kim JH, Seo H. 2022; Comparison of core needle biopsy and repeat fine-needle aspiration in avoiding diagnostic surgery for thyroid nodules initially diagnosed as atypia/follicular lesion of undetermined significance. Korean J Radiol. 23(2):280–8. DOI:
10.3348/kjr.2021.0619. PMID:
35029081. PMCID:
PMC8814697.
Article
23. Choe JY, Kwak Y, Kim M, Chung YR, Kim HJ, Kim YK, et al. 2018; Utility of a formatted pathologic reporting system in thyroid core needle biopsy: a validation study of 1998 consecutive cases. Clin Endocrinol (Oxf). 88(1):96–104. DOI:
10.1111/cen.13397. PMID:
28618022.
Article
24. Hauch A, Al-Qurayshi Z, Randolph G, Kandil E. 2014; Total thyroidectomy is associated with increased risk of complications for low- and high-volume surgeons. Ann Surg Oncol. 21(12):3844–52. DOI:
10.1245/s10434-014-3846-8. PMID:
24943236.
Article
25. Park I, Rhu J, Woo JW, Choi JH, Kim JS, Kim JH. 2016; Preserving parathyroid gland vasculature to reduce post- thyroidectomy hypocalcemia. World J Surg. 40(6):1382–9. DOI:
10.1007/s00268-016-3423-3. PMID:
27028753.
26. Park S, Jeon MJ, Song E, Oh HS, Kim M, Kwon H, et al. 2017; Clinical features of early and late postoperative hypothyroidism after lobectomy. J Clin Endocrinol Metab. 102(4):1317–24. DOI:
10.1210/jc.2016-3597. PMID:
28324106.
Article
27. Vuong HG, Chung DGB, Ngo LM, Bui TQ, Hassell L, Jung CK, et al. 2021; The use of the Bethesda system for reporting thyroid cytopathology in pediatric thyroid nodules: a meta- analysis. Thyroid. 31(8):1203–11. DOI:
10.1089/thy.2020.0702. PMID:
33504264.
28. Lee YB, Oh YL, Shin JH, Kim SW, Chung JH, Min YK, et al. 2021; Comparison of four ultrasonography-based risk stratification systems in thyroid nodules with nondiagnostic/unsatisfactory cytology: a real-world study. Cancers (Basel). 13(8):1948. DOI:
10.3390/cancers13081948. PMID:
33919595. PMCID:
PMC8073392.
Article
29. Hong MJ, Na DG, Baek JH, Sung JY, Kim JH. 2017; Cytology-ultrasonography risk-stratification scoring system based on fine-needle aspiration cytology and the Korean-Thyroid Imaging Reporting and Data System. Thyroid. 27(7):953–9. DOI:
10.1089/thy.2016.0603. PMID:
28463597.
Article
30. Vuong HG, Ngo HTT, Bychkov A, Jung CK, Vu TH, Lu KB, et al. 2020; Differences in surgical resection rate and risk of malignancy in thyroid cytopathology practice between Western and Asian countries: a systematic review and meta-analysis. Cancer Cytopathol. 128(4):238–49. DOI:
10.1002/cncy.22228. PMID:
31883438.
Article
31. Ngo HTT, Nguyen TPX, Vu TH, Jung CK, Hassell L, Kakudo K, et al. 2021; Impact of molecular testing on the management of indeterminate thyroid nodules among Western and Asian countries: a systematic review and meta-analysis. Endocr Pathol. 32(2):269–79. DOI:
10.1007/s12022-020-09643-0. PMID:
32767256.
Article
32. Słowińska-Klencka D, Wysocka-Konieczna K, Klencki M, Popowicz B. 2020; Diagnostic value of six Thyroid Imaging Reporting and Data Systems (TIRADS) in cytologically equivocal thyroid nodules. J Clin Med. 9(7):2281. DOI:
10.3390/jcm9072281. PMID:
32709122. PMCID:
PMC7408998.
Article
33. Hong HS, Lee JY. 2019; Diagnostic performance of ultrasound patterns by K-TIRADS and 2015 ATA guidelines in risk stratification of thyroid nodules and follicular lesions of undetermined significance. AJR Am J Roentgenol. 213(2):444–50. DOI:
10.2214/AJR.18.20961. PMID:
31039023.
Article
34. Nikiforov YE, Seethala RR, Tallini G, Baloch ZW, Basolo F, Thompson LD, et al. 2016; Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2(8):1023–9. DOI:
10.1001/jamaoncol.2016.0386. PMID:
27078145. PMCID:
PMC5539411.
Article
35. Cho YY, Ahn SH, Lee EK, Park YJ, Choi D, Kim BY, et al. 2024; Malignancy risk of follicular neoplasm (Bethesda IV) with variable cutoffs of tumor size: a systemic review and meta-analysis. J Clin Endocrinol Metab. 109(5):1383–92. DOI:
10.1210/clinem/dgad684. PMID:
38113188.
Article
36. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2016; 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 26(1):1–133. DOI:
10.1089/thy.2015.0020. PMID:
26462967. PMCID:
PMC4739132.
Article
37. Durante C, Hegedus L, Czarniecka A, Paschke R, Russ G, Schmitt F, et al. 2023; 2023 European Thyroid Association clinical practice guidelines for thyroid nodule management. Eur Thyroid J. 12(5):e230067. DOI:
10.1530/ETJ-23-0067.
Article
39. Lasolle H, Lopez J, Pattou F, Borson-Chazot F, Bardet S, Groussin L, et al. 2022; SFE-AFCE-SFMN 2022 consensus on the management of thyroid nodules : role of molecular tests for cytologically indeterminate thyroid nodules. Ann Endocrinol (Paris). 83(6):395–400. DOI:
10.1016/j.ando.2022.10.006. PMID:
36283464.
Article
40. Trimboli P, Ferrarazzo G, Piccardo A, Lucchini B, Durante C. 2022; Operation rate and cancer prevalence among thyroid nodules with FNAC report of suspicious for malignancy (TIR4) or malignant (TIR5) according to Italian classification system: a systematic review and meta-analysis. Endocrine. 78(1):24–31. DOI:
10.1007/s12020-022-03165-x. PMID:
35986840. PMCID:
PMC9474526.
Article
41. Chen B, Shi Y, Xu Y, Zhang J. 2021; The predictive value of coexisting BRAFV600E and TERT promoter mutations on poor outcomes and high tumour aggressiveness in papillary thyroid carcinoma: a systematic review and meta-analysis. Clin Endocrinol (Oxf). 94(5):731–42. DOI:
10.1111/cen.14316. PMID:
32816325.
Article
42. Moon S, Song YS, Kim YA, Lim JA, Cho SW, Moon JH, et al. 2017; Effects of coexistent BRAF(V600E) and TERT promoter mutations on poor clinical outcomes in papillary thyroid cancer: a meta-analysis. Thyroid. 27(5):651–60. DOI:
10.1089/thy.2016.0350. PMID:
28181854.
Article
43. Zhang C, Li Y, Li J, Chen X. 2020; Total thyroidectomy versus lobectomy for papillary thyroid cancer: a systematic review and meta-analysis. Medicine (Baltimore). 99(6):e19073. DOI:
10.1097/MD.0000000000019073. PMID:
32028431. PMCID:
PMC7015547.
44. Macedo FI, Mittal VK. 2015; Total thyroidectomy versus lobectomy as initial operation for small unilateral papillary thyroid carcinoma: a meta-analysis. Surg Oncol. 24(2):117–22. DOI:
10.1016/j.suronc.2015.04.005. PMID:
25956302.
Article
45. Bilimoria KY, Bentrem DJ, Ko CY, Stewart AK, Winchester DP, Talamonti MS, et al. 2007; Extent of surgery affects survival for papillary thyroid cancer. Ann Surg. 246(3):375–81. discussion 81–4. DOI:
10.1097/SLA.0b013e31814697d9. PMID:
17717441. PMCID:
PMC1959355.
Article
46. Rajjoub SR, Yan H, Calcatera NA, Kuchta K, Wang CE, Lutfi W, et al. 2018; Thyroid lobectomy is not sufficient for T2 papillary thyroid cancers. Surgery. 163(5):1134–43. DOI:
10.1016/j.surg.2017.12.026. PMID:
29426618.
Article
47. Suman P, Razdan SN, Wang CE, Tulchinsky M, Ahmed L, Prinz RA, et al. 2020; Thyroid lobectomy for T1b-T2 papillary thyroid cancer with high-risk features. J Am Coll Surg. 230(1):136–44. DOI:
10.1016/j.jamcollsurg.2019.09.021. PMID:
31672668.
Article
48. Nixon IJ, Wang LY, Migliacci JC, Eskander A, Campbell MJ, Aniss A, et al. 2016; An international multi-institutional validation of age 55 years as a cutoff for risk stratification in the AJCC/UICC staging system for well-differentiated thyroid cancer. Thyroid. 26(3):373–80. DOI:
10.1089/thy.2015.0315. PMID:
26914539. PMCID:
PMC4790212.
Article
51. Adam MA, Pura J, Gu L, Dinan MA, Tyler DS, Reed SD, et al. 2014; Extent of surgery for papillary thyroid cancer is not associated with survival: an analysis of 61,775 patients. Ann Surg. 260(4):601–5. discussion 5–7. DOI:
10.1097/SLA.0000000000000925. PMID:
25203876. PMCID:
PMC4532384.
52. Tuttle RM, Haugen B, Perrier ND. 2017; Updated American Joint Committee on cancer/tumor-node-metastasis staging system for differentiated and anaplastic thyroid cancer (eighth edition): what changed and why? Thyroid. 27(6):751–6. DOI:
10.1089/thy.2017.0102. PMID:
28463585. PMCID:
PMC5467103.
Article
53. Kim TH, Kim YN, Kim HI, Park SY, Choe JH, Kim JH, et al. 2017; Prognostic value of the eighth edition AJCC TNM classification for differentiated thyroid carcinoma. Oral Oncol. 71:81–6. DOI:
10.1016/j.oraloncology.2017.06.004. PMID:
28688696.
Article
54. Tam S, Boonsripitayanon M, Amit M, Fellman BM, Li Y, Busaidy NL, et al. 2018; Survival in differentiated thyroid cancer: comparing the AJCC cancer staging seventh and eighth editions. Thyroid. 28(10):1301–10. DOI:
10.1089/thy.2017.0572. PMID:
30141373.
Article
55. Xiang J, Wang Z, Sun W, Zhang H. 2021; The new T3b category has clinical significance? SEER-based study. Clin Endocrinol (Oxf). 94(3):449–59. DOI:
10.1111/cen.14305. PMID:
32745252.
Article
56. Park SY, Kim HI, Kim JH, Kim JS, Oh YL, Kim SW, et al. 2018; Prognostic significance of gross extrathyroidal extension invading only strap muscles in differentiated thyroid carcinoma. Br J Surg. 105(9):1155–62. DOI:
10.1002/bjs.10830. PMID:
29663333.
Article
57. Song E, Lee YM, Oh HS, Jeon MJ, Song DE, Kim TY, et al. 2019; A relook at the T stage of differentiated thyroid carcinoma with a focus on gross extrathyroidal extension. Thyroid. 29(2):202–8. DOI:
10.1089/thy.2018.0300. PMID:
30358515.
Article
58. Park JO, Kim JH, Joo YH, Kim SY, Kim GJ, Kim HB, et al. 2023; Guideline for the surgical management of locally invasive differentiated thyroid cancer from the Korean Society of Head and Neck Surgery. Clin Exp Otorhinolaryngol. 16(1):1–19. DOI:
10.21053/ceo.2022.01732. PMID:
36634669. PMCID:
PMC9985989.
Article
59. Lee DY, Oh DJ, Kang KR, Kim MS, Oh KH, Baek SK, et al. 2016; Comparison of learning curves for retroauricular and transaxillary endoscopic hemithyroidectomy. Ann Surg Oncol. 23(12):4023–8. DOI:
10.1245/s10434-016-5433-7. PMID:
27421697.
Article
60. Lee J, Yun JH, Nam KH, Soh EY, Chung WY. 2011; The learning curve for robotic thyroidectomy: a multicenter study. Ann Surg Oncol. 18(1):226–32. DOI:
10.1245/s10434-010-1220-z. PMID:
20680695.
Article
61. Adam MA, Thomas S, Youngwirth L, Hyslop T, Reed SD, Scheri RP, et al. 2017; Is there a minimum number of thyroidectomies a surgeon should perform to optimize patient outcomes? Ann Surg. 265(2):402–7. DOI:
10.1097/SLA.0000000000001688. PMID:
28059969.
Article
62. Ito Y, Miyauchi A, Inoue H, Fukushima M, Kihara M, Higashiyama T, et al. 2010; An observational trial for papillary thyroid microcarcinoma in Japanese patients. World J Surg. 34(1):28–35. DOI:
10.1007/s00268-009-0303-0. PMID:
20020290.
Article
63. Molinaro E, Campopiano MC, Pieruzzi L, Matrone A, Agate L, Bottici V, et al. 2020; Active surveillance in papillary thyroid microcarcinomas is feasible and safe: experience at a single Italian center. J Clin Endocrinol Metab. 105(3):e172–80. DOI:
10.1210/clinem/dgz113. PMID:
31652318. PMCID:
PMC8105780.
Article
64. Sanabria A. 2020; Experience with active surveillance of thyroid low-risk carcinoma in a developing country. Thyroid. 30(7):985–91. DOI:
10.1089/thy.2019.0522. PMID:
31950887.
Article
65. Jin M, Kim HI, Ha J, Jeon MJ, Kim WG, Lim DJ, et al. 2021; Tumor volume doubling time in active surveillance of papillary thyroid microcarcinoma: a multicenter cohort study in Korea. Thyroid. 31(10):1494–501. DOI:
10.1089/thy.2021.0094. PMID:
34225475.
Article
66. Nagaoka R, Ebina A, Toda K, Jikuzono T, Saitou M, Sen M, et al. 2021; Multifocality and progression of papillary thyroid microcarcinoma during active surveillance. World J Surg. 45(9):2769–76. DOI:
10.1007/s00268-021-06185-2. PMID:
34100116.
Article
67. Ho AS, Kim S, Zalt C, Melany ML, Chen IE, Vasquez J, et al. 2022; Expanded parameters in active surveillance for low-risk papillary thyroid carcinoma: a nonrandomized controlled trial. JAMA Oncol. 8(11):1588–96. DOI:
10.1001/jamaoncol.2022.3875. PMID:
36107411. PMCID:
PMC9478884.
Article
68. Lee EK, Moon JH, Hwangbo Y, Ryu CH, Cho SW, Choi JY, et al. 2022; Progression of low-risk papillary thyroid microcarcinoma during active surveillance: interim analysis of a multicenter prospective cohort study of active surveillance on papillary thyroid microcarcinoma in Korea. Thyroid. 32(11):1328–36. DOI:
10.1089/thy.2021.0614. PMID:
36205563. PMCID:
PMC9700369.
Article
69. Ito Y, Miyauchi A, Fujishima M, Noda T, Sano T, Sasaki T, et al. 2023; Thyroid-stimulating hormone, age, and tumor size are risk factors for progression during active surveillance of low-risk papillary thyroid microcarcinoma in adults. World J Surg. 47(2):392–401. DOI:
10.1007/s00268-022-06770-z. PMID:
36182976. PMCID:
PMC9803751.
Article
70. Miyauchi A, Ito Y, Fujishima M, Miya A, Onoda N, Kihara M, et al. 2023; Long-term outcomes of active surveillance and immediate surgery for adult patients with low-risk papillary thyroid microcarcinoma: 30-year experience. Thyroid. 33(7):817–25. DOI:
10.1089/thy.2023.0076. PMID:
37166389. PMCID:
PMC10354707.
Article
71. Tuttle RM, Fagin J, Minkowitz G, Wong R, Roman B, Patel S, et al. 2022; Active surveillance of papillary thyroid cancer: frequency and time course of the six most common tumor volume kinetic patterns. Thyroid. 32(11):1337–45. DOI:
10.1089/thy.2022.0325. PMID:
36178355. PMCID:
PMC9700377.
Article
72. Oh HS, Kwon H, Song E, Jeon MJ, Kim TY, Lee JH, et al. 2019; Tumor volume doubling time in active surveillance of papillary thyroid carcinoma. Thyroid. 29(5):642–9. DOI:
10.1089/thy.2018.0609. PMID:
30864894.
Article
73. Lee JY, Kim JH, Kim YK, Lee CY, Lee EK, Moon JH, et al. 2023; US predictors of papillary thyroid microcarcinoma progression at active surveillance. Radiology. 309(1):e230006. DOI:
10.1148/radiol.230006. PMID:
37906009.
Article
74. Ito Y, Miyauchi A, Kihara M, Higashiyama T, Kobayashi K, Miya A. 2014; Patient age is significantly related to the progression of papillary microcarcinoma of the thyroid under observation. Thyroid. 24(1):27–34. DOI:
10.1089/thy.2013.0367. PMID:
24001104. PMCID:
PMC3887422.
Article
76. Oh HS, Kim WG, Park S, Kim M, Kwon H, Jeon MJ, et al. 2017; Serial neck ultrasonographic evaluation of changes in papillary thyroid carcinoma during pregnancy. Thyroid. 27(6):773–7. DOI:
10.1089/thy.2016.0618. PMID:
28446078.
Article
77. Ito Y, Miyauchi A, Kudo T, Ota H, Yoshioka K, Oda H, et al. 2016; Effects of pregnancy on papillary microcarcinomas of the thyroid re-evaluated in the entire patient series at Kuma Hospital. Thyroid. 26(1):156–60. DOI:
10.1089/thy.2015.0393. PMID:
26670937. PMCID:
PMC4739387.
Article
78. Horiguchi K, Yoshida Y, Iwaku K, Emoto N, Kasahara T, Sato J, et al. 2021; Position paper from the Japan Thyroid Association task force on the management of low-risk papillary thyroid microcarcinoma (T1aN0M0) in adults. Endocr J. 68(7):763–80. DOI:
10.1507/endocrj.EJ20-0692. PMID:
33762511.
Article
79. Hwang H, Choi JY, Yu HW, Moon JH, Kim JH, Lee EK, et al. 2023; Surgical outcomes in patients with low-risk papillary thyroid microcarcinoma from MAeSTro study: immediate operation versus delayed operation after active surveillance. A multicenter prospective cohort study. Ann Surg. 278(5):e1087–e95. DOI:
10.1097/SLA.0000000000005841. PMID:
36912439.
80. Kim K, Choi JY, Kim SJ, Lee EK, Lee YK, Ryu JS, et al. 2022; Active surveillance versus immediate surgery for low-risk papillary thyroid microcarcinoma patients in South Korea: a cost-minimization analysis from the MAeSTro study. Thyroid. 32(6):648–56. DOI:
10.1089/thy.2021.0679. PMID:
35570657.
Article
81. Baek HS, Ha J, Kim K, Bae J, Kim JS, Kim S, et al. 2023; Cost-effectiveness of active surveillance compared to early surgery of small papillary thyroid cancer: a retrospective study on a Korean population. J Korean Med Sci. 38(34):e264. DOI:
10.3346/jkms.2023.38.e264. PMID:
37644680. PMCID:
PMC10462480.
Article
82. Kong SH, Ryu J, Kim MJ, Cho SW, Song YS, Yi KH, et al. 2019; Longitudinal assessment of quality of life according to treatment options in low-risk papillary thyroid microcarcinoma patients: active surveillance or immediate surgery (interim analysis of MAeSTro). Thyroid. 29(8):1089–96. DOI:
10.1089/thy.2018.0624. PMID:
31161898.
Article
83. Moon JH, Ryu CH, Cho SW, Choi JY, Chung EJ, Hah JH, et al. 2021; Effect of initial treatment choice on 2-year quality of life in patients with low-risk papillary thyroid microcarcinoma. J Clin Endocrinol Metab. 106(3):724–35. DOI:
10.1210/clinem/dgaa889. PMID:
33248442.
Article
84. Hwangbo Y, Choi JY, Lee EK, Ryu CH, Cho SW, Chung EJ, et al. 2022; A cross-sectional survey of patient treatment choice in a multicenter prospective cohort study on active surveillance of papillary thyroid microcarcinoma (MAeSTro). Thyroid. 32(7):772–80. DOI:
10.1089/thy.2021.0619. PMID:
35698288.
Article
85. Brito JP, Moon JH, Zeuren R, Kong SH, Kim YG, Iniguez-Ariza NM, et al. 2018; Thyroid cancer treatment choice: a pilot study of a tool to facilitate conversations with patients with papillary microcarcinomas considering treatment options. Thyroid. 28(10):1325–31. DOI:
10.1089/thy.2018.0105. PMID:
29905089.
Article
86. Issa PP, Mueller L, Hussein M, Albuck A, Shama M, Toraih E, et al. 2022; Radiologist versus non-radiologist detection of lymph node metastasis in papillary thyroid carcinoma by ultrasound: a meta-analysis. Biomedicines. 10(10):2575. DOI:
10.3390/biomedicines10102575. PMID:
36289838. PMCID:
PMC9599420.
Article
87. Suh CH, Baek JH, Choi YJ, Lee JH. 2017; Performance of CT in the preoperative diagnosis of cervical lymph node metastasis in patients with papillary thyroid cancer: a systematic review and meta-analysis. AJNR Am J Neuroradiol. 38(1):154–61. DOI:
10.3174/ajnr.A4967. PMID:
27789450. PMCID:
PMC7963646.
Article
88. Lee DH, Kim YK, Yu HW, Choi JY, Park SY, Moon JH. 2019; Computed tomography for detecting cervical lymph node metastasis in patients who have papillary thyroid microcarcinoma with tumor characteristics appropriate for active surveillance. Thyroid. 29(11):1653–9. DOI:
10.1089/thy.2019.0100. PMID:
31436140.
Article
89. Xing Z, Qiu Y, Yang Q, Yu Y, Liu J, Fei Y, et al. 2020; Thyroid cancer neck lymph nodes metastasis: meta-analysis of US and CT diagnosis. Eur J Radiol. 129:109103. DOI:
10.1016/j.ejrad.2020.109103. PMID:
32574937.
Article
90. Gronlund MP, Jensen JS, Hahn CH, Gronhoj C, Buchwald CV. 2021; Risk factors for recurrence of follicular thyroid cancer: a systematic review. Thyroid. 31(10):1523–30. DOI:
10.1089/thy.2020.0921. PMID:
34102860.
Article
91. Kim BY, Choi N, Kim SW, Jeong HS, Chung MK, Son YI. 2020; Randomized trial of prophylactic ipsilateral central lymph node dissection in patients with clinically node negative papillary thyroid microcarcinoma. Eur Arch Otorhinolaryngol. 277(2):569–76. DOI:
10.1007/s00405-019-05702-3. PMID:
31664515.
Article
92. Ito Y, Miyauchi A, Masuoka H, Fukushima M, Kihara M, Miya A. 2018; Excellent prognosis of central lymph node recurrence-free survival for cN0M0 papillary thyroid carcinoma patients who underwent routine prophylactic central node dissection. World J Surg. 42(8):2462–8. DOI:
10.1007/s00268-018-4497-x. PMID:
29372373. PMCID:
PMC6060821.
93. Kim M, Kim HI, Jeon MJ, Kim HK, Kim EH, Yi HS, et al. 2018; Eighth edition of tumor-node-metastasis staging system improve survival predictability for papillary, but not follicular thyroid carcinoma: a multicenter cohort study. Oral Oncol. 87:97–103. DOI:
10.1016/j.oraloncology.2018.10.029. PMID:
30527251.
Article
94. Ito Y, Onoda N, Okamoto T. 2020; The revised clinical practice guidelines on the management of thyroid tumors by the Japan Associations of Endocrine Surgeons: core questions and recommendations for treatments of thyroid cancer. Endocr J. 67(7):669–717. DOI:
10.1507/endocrj.EJ20-0025. PMID:
32269182.
Article
95. Song E, Kim WW, Jeon MJ, Sung TY, Song DE, Kim TY, et al. 2019; Clinical significance of gross invasion of strap muscles in patients with 1- to 4-cm-sized papillary thyroid carcinoma undergoing lobectomy. Ann Surg Oncol. 26(13):4466–71. DOI:
10.1245/s10434-019-07778-x. PMID:
31471840.
Article
96. Jang SW, Park JH, Kim HR, Kwon HJ, Lee YM, Hong SJ, et al. 2023; Recurrence risk evaluation in patients with papillary thyroid carcinoma: multicenter machine learning evaluation of lymph node variables. Cancers (Basel). 15(2):550. DOI:
10.3390/cancers15020550. PMID:
36672498. PMCID:
PMC9856505.
Article
97. Alsubaie KM, Alsubaie HM, Alzahrani FR, Alessa MA, Abdulmonem SK, Merdad MA, et al. 2022; Prophylactic central neck dissection for clinically node-negative papillary thyroid carcinoma. Laryngoscope. 132(6):1320–8. DOI:
10.1002/lary.29912. PMID:
34708877.
Article
98. Back K, Choe JH, Kim JS, Kim JH. 2021; Occult contralateral central neck metastasis in papillary thyroid carcinoma with preoperatively documented ipsilateral lateral neck metastasis. Eur J Surg Oncol. 47(6):1339–45. DOI:
10.1016/j.ejso.2021.01.008. PMID:
33744024.
Article
99. Viola D, Materazzi G, Valerio L, Molinaro E, Agate L, Faviana P, et al. 2015; Prophylactic central compartment lymph node dissection in papillary thyroid carcinoma: clinical implications derived from the first prospective randomized controlled single institution study. J Clin Endocrinol Metab. 100(4):1316–24. DOI:
10.1210/jc.2014-3825. PMID:
25590215.
Article
100. Ahn JH, Kwak JH, Yoon SG, Yi JW, Yu HW, Kwon H, et al. 2022; A prospective randomized controlled trial to assess the efficacy and safety of prophylactic central compartment lymph node dissection in papillary thyroid carcinoma. Surgery. 171(1):182–9. DOI:
10.1016/j.surg.2021.03.071. PMID:
34391573.
Article
101. Wang Y, Xiao Y, Pan Y, Yang S, Li K, Zhao W, et al. 2022; The effectiveness and safety of prophylactic central neck dissection in clinically node-negative papillary thyroid carcinoma patients: a meta-analysis. Front Endocrinol (Lausanne). 13:1094012. DOI:
10.3389/fendo.2022.1094012. PMID:
36733809. PMCID:
PMC9886572.
102. Sanabria A, Betancourt-Aguero C, Sanchez-Delgado JG, Garcia-Lozano C. 2022; Prophylactic central neck lymph node dissection in low-risk thyroid carcinoma patients does not decrease the incidence of locoregional recurrence: a meta- analysis of randomized trials. Ann Surg. 276(1):66–73. DOI:
10.1097/SLA.0000000000005388. PMID:
35129470.
Article
103. Chen L, Wu YH, Lee CH, Chen HA, Loh EW, Tam KW. 2018; Prophylactic central neck dissection for papillary thyroid carcinoma with clinically uninvolved central neck lymph nodes: a systematic review and meta-analysis. World J Surg. 42(9):2846–57. DOI:
10.1007/s00268-018-4547-4. PMID:
29488066.
Article
104. Zhao WJ, Luo H, Zhou YM, Dai WY, Zhu JQ. 2017; Evaluating the effectiveness of prophylactic central neck dissection with total thyroidectomy for cN0 papillary thyroid carcinoma: an updated meta-analysis. Eur J Surg Oncol. 43(11):1989–2000. DOI:
10.1016/j.ejso.2017.07.008. PMID:
28807633.
Article
105. Hartl DM, Mamelle E, Borget I, Leboulleux S, Mirghani H, Schlumberger M. 2013; Influence of prophylactic neck dissection on rate of retreatment for papillary thyroid carcinoma. World J Surg. 37(8):1951–8. DOI:
10.1007/s00268-013-2089-3. PMID:
23677562.
Article
106. Conzo G, Calò PG, Sinisi AA, De Bellis A, Pasquali D, Iorio S, et al. 2014; Impact of prophylactic central compartment neck dissection on locoregional recurrence of differentiated thyroid cancer in clinically node-negative patients: a retrospective study of a large clinical series. Surgery. 155(6):998–1005. DOI:
10.1016/j.surg.2014.02.010. PMID:
24856120.
Article
107. Perros P, Boelaert K, Colley S, Evans C, Evans RM, Gerrard Ba G, et al. 2014; Guidelines for the management of thyroid cancer. Clin Endocrinol (Oxf). 81 Suppl 1:1–122. DOI:
10.1111/cen.12515. PMID:
24989897.
Article
108. Filetti S, Durante C, Hartl D, Leboulleux S, Locati LD, Newbold K, et al. 2019; Thyroid cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 30(12):1856–83. DOI:
10.1093/annonc/mdz400. PMID:
31549998.
Article
109. Haddad RI, Bischoff L, Ball D, Bernet V, Blomain E, Busaidy NL, et al. 2022; Thyroid carcinoma, version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 20(8):925–51. DOI:
10.6004/jnccn.2022.0040. PMID:
35948029.
110. Yan S, Yu J, Zhao W, Wang B, Zhang L. 2022; Prophylactic bilateral central neck dissection should be evaluated based on prospective randomized study of 581 PTC patients. BMC Endocr Disord. 22(1):5. DOI:
10.1186/s12902-021-00909-0. PMID:
34983475. PMCID:
PMC8725302.
Article
111. Tao Y, Wang F, Shen X, Zhu G, Liu R, Viola D, et al. 2021; BRAF V600E status sharply differentiates lymph node metastasis-associated mortality risk in papillary thyroid cancer. J Clin Endocrinol Metab. 106(11):3228–38. DOI:
10.1210/clinem/dgab286. PMID:
34273152. PMCID:
PMC8530728.
112. Zhang Z, Zhang X, Yin Y, Zhao S, Wang K, Shang M, et al. 2022; Integrating BRAF(V600E) mutation, ultrasonic and clinicopathologic characteristics for predicting the risk of cervical central lymph node metastasis in papillary thyroid carcinoma. BMC Cancer. 22(1):461. DOI:
10.1186/s12885-022-09550-z. PMID:
35473554. PMCID:
PMC9044661.
Article
113. Erdem E, Gulcelik MA, Kuru B, Alagol H. 2003; Comparison of completion thyroidectomy and primary surgery for differentiated thyroid carcinoma. Eur J Surg Oncol. 29(9):747–9. DOI:
10.1016/j.ejso.2003.08.006. PMID:
14602494.
Article
115. Untch BR, Palmer FL, Ganly I, Patel SG, Michael Tuttle R, Shah JP, et al. 2014; Oncologic outcomes after completion thyroidectomy for patients with well-differentiated thyroid carcinoma. Ann Surg Oncol. 21(4):1374–8. DOI:
10.1245/s10434-013-3428-1. PMID:
24366419.
Article
116. Li G, Li R, Song L, Chen W, Jiang K, Tang H, et al. 2020; Implications of extrathyroidal extension invading only the strap muscles in papillary thyroid carcinomas. Thyroid. 30(1):57–64. DOI:
10.1089/thy.2018.0801. PMID:
31830859.
Article
117. Amit M, Boonsripitayanon M, Goepfert RP, Tam S, Busaidy NL, Cabanillas ME, et al. 2018; Extrathyroidal extension: does strap muscle invasion alone influence recurrence and survival in patients with differentiated thyroid cancer? Ann Surg Oncol. 25(11):3380–8. DOI:
10.1245/s10434-018-6563-x. PMID:
30022274.
Article
118. Danilovic DLS, Castroneves LA, Suemoto CK, Elias LO, Soares IC, Camargo RY, et al. 2020; Is there a difference between minimal and gross extension into the strap muscles for the risk of recurrence in papillary thyroid carcinomas? Thyroid. 30(7):1008–16. DOI:
10.1089/thy.2019.0753. PMID:
32059626.
Article
119. Kang IK, Kim K, Bae JS, Kim JS. 2021; Is completion thyroidectomy necessary in patients with papillary thyroid carcinoma who underwent lobectomy? Korean J Head Neck Oncol. 37(2):25–31. DOI:
10.21593/kjhno/2021.37.2.25.
Article
120. Baloch ZW, Asa SL, Barletta JA, Ghossein RA, Juhlin CC, Jung CK, et al. 2022; Overview of the 2022 WHO classification of thyroid neoplasms. Endocr Pathol. 33(1):27–63. DOI:
10.1007/s12022-022-09707-3. PMID:
35288841.
Article
121. Wreesmann VB, Nixon IJ, Rivera M, Katabi N, Palmer F, Ganly I, et al. 2015; Prognostic value of vascular invasion in well- differentiated papillary thyroid carcinoma. Thyroid. 25(5):503–8. DOI:
10.1089/thy.2015.0052. PMID:
25748079. PMCID:
PMC4968276.
Article
122. Suh YJ, Kwon H, Kim SJ, Choi JY, Lee KE, Park YJ, et al. 2015; Factors affecting the locoregional recurrence of conventional papillary thyroid carcinoma after surgery: a retrospective analysis of 3381 patients. Ann Surg Oncol. 22(11):3543–9. DOI:
10.1245/s10434-015-4448-9. PMID:
25743326.
Article
123. de Castro TP, Waissmann W, Simoes TC, de Mello RC, Carvalho DP. 2016; Predictors for papillary thyroid cancer persistence and recurrence: a retrospective analysis with a 10-year follow-up cohort study. Clin Endocrinol (Oxf). 85(3):466–74. DOI:
10.1111/cen.13032. PMID:
26834009.
Article
124. Sorrenti S, Carbotta G, Di Matteo FM, Catania A, Pironi D, Tartaglia F, et al. 2020; Evaluation of clinicopathological and molecular parameters on disease recurrence of papillary thyroid cancer patient: a retrospective observational study. Cancers (Basel). 12(12):3637. DOI:
10.3390/cancers12123637. PMID:
33291668. PMCID:
PMC7761952.
Article
126. Furlan JC, Bedard YC, Rosen IB. 2004; Clinicopathologic significance of histologic vascular invasion in papillary and follicular thyroid carcinomas. J Am Coll Surg. 198(3):341–8. DOI:
10.1016/j.jamcollsurg.2003.11.012. PMID:
14992733.
127. Cao J, Hu JL, Chen C, Wang QL, Fang XH, Zhang Y, et al. 2016; Vascular invasion is an independent prognostic factor for distant recurrence-free survival in papillary thyroid carcinoma: a matched-case comparative study. J Clin Pathol. 69(10):872–7. DOI:
10.1136/jclinpath-2015-203547. PMID:
27010434.
Article
128. Chereau N, Trésallet C, Noullet S, Godiris-Petit G, Tissier F, Leenhardt L, et al. 2016; Does the T1 subdivision correlate with the risk of recurrence of papillary thyroid cancer? Langenbecks Arch Surg. 401(2):223–30. DOI:
10.1007/s00423-016-1399-y. PMID:
26957089.
Article
129. Gardner RE, Tuttle RM, Burman KD, Haddady S, Truman C, Sparling YH, et al. 2000; Prognostic importance of vascular invasion in papillary thyroid carcinoma. Arch Otolaryngol Head Neck Surg. 126(3):309–12. DOI:
10.1001/archotol.126.3.309. PMID:
10722002.
Article
130. Akslen LA, Myking AO, Salvesen H, Varhaug JE. 1992; Prognostic importance of various clinicopathological features in papillary thyroid carcinoma. Eur J Cancer. 29A(1):44–51. DOI:
10.1016/0959-8049(93)90574-Y. PMID:
1445745.
Article
131. Kang SW, Jeong JJ, Yun JS, Sung TY, Lee SC, Lee YS, et al. 2009; Robot-assisted endoscopic surgery for thyroid cancer: experience with the first 100 patients. Surg Endosc. 23(11):2399–406. DOI:
10.1007/s00464-009-0366-x. PMID:
19263137.
Article
132. Lee KE, Rao J, Youn YK. 2009; Endoscopic thyroidectomy with the da Vinci robot system using the bilateral axillary breast approach (BABA) technique: our initial experience. Surg Laparosc Endosc Percutan Tech. 19(3):e71–5. DOI:
10.1097/SLE.0b013e3181a4ccae. PMID:
19542833.
133. Singer MC, Seybt MW, Terris DJ. 2011; Robotic facelift thyroidectomy: I. Preclinical simulation and morphometric assessment. Laryngoscope. 121(8):1631–5. DOI:
10.1002/lary.21831. PMID:
21692075.
Article
134. Richmon JD, Holsinger FC, Kandil E, Moore MW, Garcia JA, Tufano RP. 2011; Transoral robotic-assisted thyroidectomy with central neck dissection: preclinical cadaver feasibility study and proposed surgical technique. J Robot Surg. 5(4):279–82. DOI:
10.1007/s11701-011-0287-2. PMID:
22162981. PMCID:
PMC3214254.
Article
135. Lang BH, Wong CK, Tsang JS, Wong KP, Wan KY. 2015; A systematic review and meta-analysis evaluating completeness and outcomes of robotic thyroidectomy. Laryngoscope. 125(2):509–18. DOI:
10.1002/lary.24946. PMID:
25236330.
Article
136. Martino B, Nitro L, De Pasquale L, Lozza P, Maccari A, Castellani L, et al. 2022; Conversion rates in robotic thyroid surgery: a systematic review and meta-analysis. Int J Med Robot. 18(5):e2427. DOI:
10.1002/rcs.2427. PMID:
35644881. PMCID:
PMC9539493.
Article
137. Sun GH, Peress L, Pynnonen MA. 2014; Systematic review and meta-analysis of robotic vs conventional thyroidectomy approaches for thyroid disease. Otolaryngol Head Neck Surg. 150(4):520–32. DOI:
10.1177/0194599814521779. PMID:
24500878.
Article
138. Pan JH, Zhou H, Zhao XX, Ding H, Wei L, Qin L, et al. 2017; Robotic thyroidectomy versus conventional open thyroidectomy for thyroid cancer: a systematic review and meta-analysis. Surg Endosc. 31(10):3985–4001. DOI:
10.1007/s00464-017-5433-0. PMID:
28337546.
Article
139. Wang YC, Liu K, Xiong JJ, Zhu JQ. 2015; Robotic thyroidectomy versus conventional open thyroidectomy for differentiated thyroid cancer: meta-analysis. J Laryngol Otol. 129(6):558–67. DOI:
10.1017/S002221511500122X. PMID:
26004423.
Article
140. Kihara M, Miyauchi A, Yabuta T, Higashiyama T, Fukushima M, Ito Y, et al. 2014; Outcome of vocal cord function after partial layer resection of the recurrent laryngeal nerve in patients with invasive papillary thyroid cancer. Surgery. 155(1):184–9. DOI:
10.1016/j.surg.2013.06.052. PMID:
24646959.
Article
141. Moritani S, Takenobu M, Yoshioka K, Kawamoto K, Fujii T, Yasunaga M, et al. 2021; Novel surgical methods for reconstruction of the recurrent laryngeal nerve: microscope- guided partial layer resection and intralaryngeal reconstruction of the recurrent laryngeal nerve. Surgery. 169(5):1124–30. DOI:
10.1016/j.surg.2020.09.017. PMID:
33092811.
Article
143. Kamani D, Darr EA, Randolph GW. 2013; Electrophysiologic monitoring characteristics of the recurrent laryngeal nerve preoperatively paralyzed or invaded with malignancy. Otolaryngol Head Neck Surg. 149(5):682–8. DOI:
10.1177/0194599813504735. PMID:
24046274.
Article
144. Kim KH, Sung MW, Chang KH, Kang BS. 2000; Therapeutic dilemmas in the management of thyroid cancer with laryngotracheal involvement. Otolaryngol Head Neck Surg. 122(5):763–7. DOI:
10.1016/S0194-5998(00)70212-9. PMID:
10793362.
Article
145. Iwaki S, Maeda T, Saito M, Otsuki N, Takahashi M, Wakui E, et al. 2017; Role of immediate recurrent laryngeal nerve reconstruction in surgery for thyroid cancers with fixed vocal cords. Head Neck. 39(3):427–31. DOI:
10.1002/hed.24627. PMID:
27997055.
Article
146. Yuan Q, Hou J, Liao Y, Zheng L, Wang K, Wu G. 2020; Selective vagus-recurrent laryngeal nerve anastomosis in thyroidectomy with cancer invasion or iatrogenic transection. Langenbecks Arch Surg. 405(4):461–8. DOI:
10.1007/s00423-020-01906-y. PMID:
32504208.
Article
147. Cody HS 3rd, Shah JP. 1981; Locally invasive, well-differentiated thyroid cancer. 22 years' experience at Memorial Sloan-Kettering Cancer Center. Am J Surg. 142(4):480–3. DOI:
10.1016/0002-9610(81)90379-2. PMID:
7283051.
148. Wada N, Nakayama H, Masudo Y, Suganuma N, Rino Y. 2006; Clinical outcome of different modes of resection in papillary thyroid carcinomas with laryngotracheal invasion. Langenbecks Arch Surg. 391(6):545–9. DOI:
10.1007/s00423-006-0106-9. PMID:
17043903.
Article
149. Shin DH, Mark EJ, Suen HC, Grillo HC. 1993; Pathologic staging of papillary carcinoma of the thyroid with airway invasion based on the anatomic manner of extension to the trachea: a clinicopathologic study based on 22 patients who underwent thyroidectomy and airway resection. Hum Pathol. 24(8):866–70. DOI:
10.1016/0046-8177(93)90136-5. PMID:
8375857.
Article
150. McCarty TM, Kuhn JA, Williams WL Jr, Ellenhorn JD, O'Brien JC, Preskitt JT, et al. 1997; Surgical management of thyroid cancer invading the airway. Ann Surg Oncol. 4(5):403–8. DOI:
10.1007/BF02305553. PMID:
9259967.
Article
152. Ito Y, Fukushima M, Yabuta T, Tomoda C, Inoue H, Kihara M, et al. 2009; Local prognosis of patients with papillary thyroid carcinoma who were intra-operatively diagnosed as having minimal invasion of the trachea: a 17-year experience in a single institute. Asian J Surg. 32(2):102–8. DOI:
10.1016/S1015-9584(09)60019-1. PMID:
19423457.
Article
153. Su SY, Milas ZL, Bhatt N, Roberts D, Clayman GL. 2016; Well-differentiated thyroid cancer with aerodigestive tract invasion: long-term control and functional outcomes. Head Neck. 38(1):72–8. DOI:
10.1002/hed.23851. PMID:
25204531.
Article
156. Allen M, Spillinger A, Arianpour K, Johnson J, Johnson AP, Folbe AJ, et al. 2021; Tracheal resection in the management of thyroid cancer: an evidence-based approach. Laryngoscope. 131(4):932–46. DOI:
10.1002/lary.29112. PMID:
32985692.
157. Ji YB, Tae K, Lee YS, Jeong JH, Lee SH, Kim KR, et al. 2009; Surgical management of tracheal invasion by differentiated thyroid cancer: how we do it. Clin Otolaryngol. 34(6):565–7. DOI:
10.1111/j.1749-4486.2009.02026.x. PMID:
20070768.
Article
158. Musholt TJ, Musholt PB, Behrend M, Raab R, Scheumann GF, Klempnauer J. 1999; Invasive differentiated thyroid carcinoma: tracheal resection and reconstruction procedures in the hands of the endocrine surgeon. Surgery. 126(6):1078–87. discussion 87–8. DOI:
10.1067/msy.2099.102267. PMID:
10598191.
Article
159. Shadmehr MB, Farzanegan R, Zangi M, Mohammadzadeh A, Sheikhy K, Pejhan S, et al. 2012; Thyroid cancers with laryngotracheal invasion. Eur J Cardiothorac Surg. 41(3):635–40. DOI:
10.1093/ejcts/ezr131. PMID:
22219428.
Article
160. Park CS, Suh KW, Min JS. 1993; Cartilage-shaving procedure for the control of tracheal cartilage invasion by thyroid carcinoma. Head Neck. 15(4):289–91. DOI:
10.1002/hed.2880150403. PMID:
8360048.
Article
161. Ozaki O, Sugino K, Mimura T, Ito K. 1995; Surgery for patients with thyroid carcinoma invading the trachea: circumferential sleeve resection followed by end-to-end anastomosis. Surgery. 117(3):268–71. DOI:
10.1016/S0039-6060(05)80200-4. PMID:
7878531.
Article
162. Tsai YF, Tseng YL, Wu MH, Hung CJ, Lai WW, Lin MY. 2005; Aggressive resection of the airway invaded by thyroid carcinoma. Br J Surg. 92(11):1382–7. DOI:
10.1002/bjs.5124. PMID:
16044411.
Article
163. Tsukahara K, Sugitani I, Kawabata K. 2009; Surgical management of tracheal shaving for papillary thyroid carcinoma with tracheal invasion. Acta Otolaryngol. 129(12):1498–502. DOI:
10.3109/00016480902725239. PMID:
19922104.
Article
164. Warshavsky A, Rosen R, Nard-Carmel N, Muhanna N, Ungar O, Abergel A, et al. 2021; Outcomes of tracheal resections in well-differentiated thyroid cancer-a case series and meta-analysis. World J Surg. 45(9):2752–8. DOI:
10.1007/s00268-021-06172-7. PMID:
34023920.
Article
166. Ebihara M, Kishimoto S, Hayashi R, Miyazaki M, Shinozaki T, Daiko H, et al. 2011; Window resection of the trachea and secondary reconstruction for invasion by differentiated thyroid carcinoma. Auris Nasus Larynx. 38(2):271–5. DOI:
10.1016/j.anl.2010.09.003. PMID:
21093183.
Article
168. McCaffrey TV, Bergstralh EJ, Hay ID. 1994; Locally invasive papillary thyroid carcinoma: 1940-1990. Head Neck. 16(2):165–72. DOI:
10.1002/hed.2880160211. PMID:
8021137.
Article