2. American Psychiatric Association. Diagnostic and statistical manual of mental disorders
(DSM-5®). 5th ed. Washington: American Psychiatric Association;2013. DOI:
10.1176/appi.books.9780890425596.
5. Loomes R, Hull L, Mandy WPL. What is the male-to-female ratio in autism spectrum disorder? A
systematic review and meta-analysis. J Am Acad Child Adolesc Psychiatry. 2017; 56(6):466–474. DOI:
10.1016/j.jaac.2017.03.013. PMID:
28545751.
6. Hull L, Petrides KV, Mandy W. The female autism phenotype and camouflaging: a narrative
review. Rev J Autism Dev Disord. 2020; 7(4):306–317. DOI:
10.1007/s40489-020-00197-9.
7. Zwaigenbaum L, Bryson SE, Szatmari P, Brian J, Smith IM, Roberts W, et al. Sex differences in children with autism spectrum disorder
identified within a high-risk infant cohort. J Autism Dev Disord. 2012; 42(12):2585–2596. DOI:
10.1007/s10803-012-1515-y. PMID:
22453928.
8. Silverman JL, Thurm A, Ethridge SB, Soller MM, Petkova SP, Abel T, et al. Reconsidering animal models used to study autism spectrum
disorder: current state and optimizing future. Genes Brain Behav. 2022; 21(5):e12803. DOI:
10.1111/gbb.12803. PMID:
35285132. PMCID:
PMC9189007.
9. Pensado-López A, Veiga-Rúa S, Carracedo Á, Allegue C, Sánchez L. Experimental models to study autism spectrum disorders: hiPSCs,
rodents and zebrafish. Genes. 2020; 11(11):1376. DOI:
10.3390/genes11111376. PMID:
33233737. PMCID:
PMC7699923.
10. Kazdoba TM, Leach PT, Yang M, Silverman JL, Solomon M, Crawley JN. Translational mouse models of autism: advancing toward
pharmacological therapeutics. Curr Top Behav Neurosci. 2016; 28:1–52. DOI:
10.1007/7854_2015_5003. PMID:
27305922. PMCID:
PMC5116923.
11. Jabarin R, Netser S, Wagner S. Beyond the three-chamber test: toward a multimodal and objective
assessment of social behavior in rodents. Mol Autism. 2022; 13(1):41. DOI:
10.1186/s13229-022-00521-6. PMID:
36284353. PMCID:
PMC9598038.
14. Guang S, Pang N, Deng X, Yang L, He F, Wu L, et al. Synaptopathology involved in autism spectrum
disorder. Front Cell Neurosci. 2018; 12:470. DOI:
10.3389/fncel.2018.00470. PMID:
30627085. PMCID:
PMC6309163.
15. Banerjee-Basu S, Packer A. SFARI Gene: an evolving database for the autism research
community. Dis Model Mech. 2010; 3(3-4):133–135. DOI:
10.1242/dmm.005439. PMID:
20212079.
16. Abrahams BS, Arking DE, Campbell DB, Mefford HC, Morrow EM, Weiss LA, et al. SFARI Gene 2.0: a community-driven knowledgebase for the autism
spectrum disorders (ASDs). Mol Autism. 2013; 4(1):36. DOI:
10.1186/2040-2392-4-36. PMID:
24090431. PMCID:
PMC3851189.
17. Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of
de novo coding mutations to
autism spectrum disorder. Nature. 2014; 515(7526):216–221. DOI:
10.1038/nature13908. PMID:
25363768. PMCID:
PMC4313871.
18. Choi L, An JY. Genetic architecture of autism spectrum disorder: lessons from
large-scale genomic studies. Neurosci Biobehav Rev. 2021; 128:244–257. DOI:
10.1016/j.neubiorev.2021.06.028. PMID:
34166716.
19. Wang T, Guo H, Xiong B, Stessman HAF, Wu H, Coe BP, et al.
De novo genic mutations among a Chinese autism
spectrum disorder cohort. Nat Commun. 2016; 7:13316. DOI:
10.1038/ncomms13316. PMID:
27824329. PMCID:
PMC5105161.
20. Stessman HAF, Xiong B, Coe BP, Wang T, Hoekzema K, Fenckova M, et al. Targeted sequencing identifies 91 neurodevelopmental-disorder
risk genes with autism and developmental-disability biases. Nat Genet. 2017; 49(4):515–526. DOI:
10.1038/ng.3792. PMID:
28191889. PMCID:
PMC5374041.
21. Ellingford RA, Panasiuk MJ, de Meritens ER, Shaunak R, Naybour L, Browne L, et al. Cell-type-specific synaptic imbalance and disrupted homeostatic
plasticity in cortical circuits of ASD-associated
Chd8
haploinsufficient mice. Mol Psychiatry. 2021; 26(7):3614–3624. DOI:
10.1038/s41380-021-01070-9. PMID:
33837267. PMCID:
PMC8505247.
22. Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein
SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007; 39(1):25–27. DOI:
10.1038/ng1933. PMID:
17173049. PMCID:
PMC2082049.
23. Betancur C, Buxbaum JD.
SHANK3 haploinsufficiency: a
"common" but underdiagnosed highly penetrant monogenic cause
of autism spectrum disorders. Mol Autism. 2013; 4(1):17. DOI:
10.1186/2040-2392-4-17. PMID:
23758743. PMCID:
PMC3695795.
24. Monteiro P, Feng G. SHANK proteins: roles at the synapse and in autism spectrum
disorder. Nat Rev Neurosci. 2017; 18(3):147–157. DOI:
10.1038/nrn.2016.183. PMID:
28179641.
25. Peca J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, et al.
Shank3 mutant mice display autistic-like
behaviours and striatal dysfunction. Nature. 2011; 472(7344):437–442. DOI:
10.1038/nature09965. PMID:
21423165. PMCID:
PMC3090611.
26. Maloney SE, Sarafinovska S, Weichselbaum C, McCullough KB, Swift RG, Liu Y, et al. A comprehensive assay of social motivation reveals sex-specific
roles of autism-associated genes and oxytocin. Cell Rep Methods. 2023; 3(6):100504. DOI:
10.1016/j.crmeth.2023.100504. PMID:
37426756. PMCID:
PMC10326376.
27. Matas E, Maisterrena A, Thabault M, Balado E, Francheteau M, Balbous A, et al. Major motor and gait deficits with sexual dimorphism in a
Shank3 mutant mouse model. Mol Autism. 2021; 12(1):2. DOI:
10.1186/s13229-020-00412-8. PMID:
33468258. PMCID:
PMC7814442.
28. Moretto E, Murru L, Martano G, Sassone J, Passafaro M. Glutamatergic synapses in neurodevelopmental
disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2018; 84(Pt B):328–342. DOI:
10.1016/j.pnpbp.2017.09.014. PMID:
28935587.
29. Bourgeron T. From the genetic architecture to synaptic plasticity in autism
spectrum disorder. Nat Rev Neurosci. 2015; 16(9):551–563. DOI:
10.1038/nrn3992. PMID:
26289574.
30. Barnard RA, Pomaville MB, O'Roak BJ. Mutations and modeling of the chromatin remodeler CHD8 define an
emerging autism etiology. Front Neurosci. 2015; 9:477. DOI:
10.3389/fnins.2015.00477. PMID:
26733790. PMCID:
PMC4681771.
31. Nishiyama M, Nakayama K, Tsunematsu R, Tsukiyama T, Kikuchi A, Nakayama KI. Early embryonic death in mice lacking the
β-catenin-binding protein Duplin. Mol Cell Biol. 2004; 24(19):8386–8394. DOI:
10.1128/MCB.24.19.8386-8394.2004. PMID:
15367660. PMCID:
PMC516734.
32. Katayama Y, Nishiyama M, Shoji H, Ohkawa Y, Kawamura A, Sato T, et al. CHD8 haploinsufficiency results in autistic-like phenotypes in
mice. Nature. 2016; 537(7622):675–679. DOI:
10.1038/nature19357. PMID:
27602517.
33. Durak O, Gao F, Kaeser-Woo YJ, Rueda R, Martorell AJ, Nott A, et al. Chd8 mediates cortical neurogenesis via transcriptional
regulation of cell cycle and Wnt signaling. Nat Neurosci. 2016; 19(11):1477–1488. DOI:
10.1038/nn.4400. PMID:
27694995. PMCID:
PMC5386887.
34. Gompers AL, Su-Feher L, Ellegood J, Copping NA, Asrafuzzaman Riyadh M, Stradleigh TW, et al. Germline
Chd8 haploinsufficiency alters brain
development in mouse. Nat Neurosci. 2017; 20(8):1062–1073. DOI:
10.1038/nn.4592. PMID:
28671691. PMCID:
PMC6008102.
35. Platt RJ, Zhou Y, Slaymaker IM, Shetty AS, Weisbach NR, Kim JA, et al.
Chd8 mutation leads to autistic-like behaviors
and impaired striatal circuits. Cell Rep. 2017; 19(2):335–350. DOI:
10.1016/j.celrep.2017.03.052. PMID:
28402856. PMCID:
PMC5455342.
36. Suetterlin P, Hurley S, Mohan C, Riegman KLH, Pagani M, Caruso A, et al. Altered neocortical gene expression, brain overgrowth and
functional over-connectivity in
Chd8 haploinsufficient
mice. Cereb Cortex. 2018; 28(6):2192–2206. DOI:
10.1093/cercor/bhy058. PMID:
29668850. PMCID:
PMC6018918.
37. Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP, Penn O, et al. Disruptive
CHD8 mutations define a subtype of
autism early in development. Cell. 2014; 158(2):263–276. DOI:
10.1016/j.cell.2014.06.017. PMID:
24998929. PMCID:
PMC4136921.
38. O'Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, et al. Multiplex targeted sequencing identifies recurrently mutated
genes in autism spectrum disorders. Science. 2012; 338(6114):1619–1622. DOI:
10.1126/science.1227764. PMID:
23160955. PMCID:
PMC3528801.
39. Merner N, Forgeot d'Arc B, Bell SC, Maussion G, Peng H, Gauthier J, et al. A
de novo frameshift mutation in chromodomain
helicase DNA-binding domain 8 (CHD8): a case report and literature
review. Am J Med Genet A. 2016; 170(5):1225–1235. DOI:
10.1002/ajmg.a.37566. PMID:
26789910.
40. Jung H, Park H, Choi Y, Kang H, Lee E, Kweon H, et al. Sexually dimorphic behavior, neuronal activity, and gene
expression in Chd8-mutant mice. Nat Neurosci. 2018; 21(9):1218–1228. DOI:
10.1038/s41593-018-0208-z. PMID:
30104731.
42. Pacey LKK, Xuan ICY, Guan S, Sussman D, Mark Henkelman R, Chen Y, et al. Delayed myelination in a mouse model of fragile X
syndrome. Hum Mol Genet. 2013; 22(19):3920–3930. DOI:
10.1093/hmg/ddt246. PMID:
23740941.
43. Qin M, Entezam A, Usdin K, Huang T, Liu ZH, Hoffman GE, et al. A mouse model of the fragile X premutation: effects on behavior,
dendrite morphology, and regional rates of cerebral protein
synthesis. Neurobiol Dis. 2011; 42(1):85–98. DOI:
10.1016/j.nbd.2011.01.008. PMID:
21220020. PMCID:
PMC3150744.
44. Wang Z, Qiao D, Chen H, Zhang S, Zhang B, Zhang J, et al. Effects of
Fmr1 gene mutations on sex
differences in autism-like behavior and dendritic spine development in mice
and transcriptomic studies. Neuroscience. 2023; 534:16–28. DOI:
10.1016/j.neuroscience.2023.10.001. PMID:
37852411.
45. Luo J, Norris RH, Gordon SL, Nithianantharajah J. Neurodevelopmental synaptopathies: insights from behaviour in
rodent models of synapse gene mutations. Prog Neuropsychopharmacol Biol Psychiatry. 2018; 84(Pt B):424–439. DOI:
10.1016/j.pnpbp.2017.12.001. PMID:
29217145.
46. Tatti R, Haley MS, Swanson OK, Tselha T, Maffei A. Neurophysiology and regulation of the balance between excitation
and inhibition in neocortical circuits. Biol Psychiatry. 2017; 81(10):821–831. DOI:
10.1016/j.biopsych.2016.09.017. PMID:
27865453. PMCID:
PMC5374043.
47. Hollestein V, Poelmans G, Forde NJ, Beckmann CF, Ecker C, Mann C, et al. Excitatory/inhibitory imbalance in autism: the role of glutamate
and GABA gene-sets in symptoms and cortical brain structure. Transl Psychiatry. 2023; 13(1):18. DOI:
10.1038/s41398-023-02317-5. PMID:
36681677. PMCID:
PMC9867712.
48. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain
development. Science. 2011; 333(6048):1456–1458. DOI:
10.1126/science.1202529. PMID:
21778362.
50. Guneykaya D, Ivanov A, Hernandez DP, Haage V, Wojtas B, Meyer N, et al. Transcriptional and translational differences of microglia from
male and female brains. Cell Rep. 2018; 24(10):2773–2783.E6. DOI:
10.1016/j.celrep.2018.08.001. PMID:
30184509.
52. McCarthy MM, Nugent BM, Lenz KM. Neuroimmunology and neuroepigenetics in the establishment of sex
differences in the brain. Nat Rev Neurosci. 2017; 18(8):471–484. DOI:
10.1038/nrn.2017.61. PMID:
28638119. PMCID:
PMC5771241.
53. Alarcón M, Abrahams BS, Stone JL, Duvall JA, Perederiy JV, Bomar JM, et al. Linkage, association, and gene-expression analyses identify
CNTNAP2 as an autism-susceptibility
gene. Am J Hum Genet. 2008; 82(1):150–159. DOI:
10.1016/j.ajhg.2007.09.005. PMID:
18179893. PMCID:
PMC2253955.
54. Varea O, Martin-de-Saavedra MD, Kopeikina KJ, Schürmann B, Fleming HJ, Fawcett-Patel JM, et al. Synaptic abnormalities and cytoplasmic glutamate receptor
aggregates in contactin associated protein-like
2/Caspr2
knockout neurons. Proc Natl Acad Sci USA. 2015; 112(19):6176–6181. DOI:
10.1073/pnas.1423205112. PMID:
25918374. PMCID:
PMC4434727.
55. Anderson GR, Galfin T, Xu W, Aoto J, Malenka RC, Südhof TC. Candidate autism gene screen identifies critical role for
cell-adhesion molecule CASPR2 in dendritic arborization and spine
development. Proc Natl Acad Sci USA. 2012; 109(44):18120–18125. DOI:
10.1073/pnas.1216398109. PMID:
23074245. PMCID:
PMC3497786.
56. Lazaro MT, Taxidis J, Shuman T, Bachmutsky I, Ikrar T, Santos R, et al. Reduced prefrontal synaptic connectivity and disturbed
oscillatory population dynamics in the CNTNAP2 model of
autism. Cell Rep. 2019; 27(9):2567–2578.E6. DOI:
10.1016/j.celrep.2019.05.006. PMID:
31141683. PMCID:
PMC6553483.
58. Dawson MS, Gordon-Fleet K, Yan L, Tardos V, He H, Mui K, et al. Sexual dimorphism in the social behaviour of
Cntnap2-null mice correlates with disrupted synaptic
connectivity and increased microglial activity in the anterior cingulate
cortex. Commun Biol. 2023; 6(1):846. DOI:
10.1038/s42003-023-05215-0. PMID:
37582968. PMCID:
PMC10427688.
59. Rahman MM, Shu YH, Chow T, Lurmann FW, Yu X, Martinez MP, et al. Prenatal exposure to air pollution and autism spectrum disorder:
sensitive windows of exposure and sex differences. Environ Health Perspect. 2022; 130(1):017008-1–017008-9. DOI:
10.1289/EHP9509. PMID:
35040691. PMCID:
PMC8765363.
61. Roberts AL, Koenen KC, Lyall K, Ascherio A, Weisskopf MG. Women's posttraumatic stress symptoms and autism spectrum
disorder in their children. Res Autism Spectr Disord. 2014; 8(6):608–616. DOI:
10.1016/j.rasd.2014.02.004. PMID:
24855487. PMCID:
PMC4025916.
63. Smith CJ, Rendina DN, Kingsbury MA, Malacon KE, Nguyen DM, Tran JJ, et al. Microbial modulation via cross-fostering prevents the effects of
pervasive environmental stressors on microglia and social behavior, but not
the dopamine system. Mol Psychiatry. 2023; 28(6):2549–2562. DOI:
10.1038/s41380-023-02108-w. PMID:
37198262. PMCID:
PMC10719943.
64. Gegenhuber B, Wu MV, Bronstein R, Tollkuhn J. Gene regulation by gonadal hormone receptors underlies brain sex
differences. Nature. 2022; 606(7912):153–159. DOI:
10.1038/s41586-022-04686-1. PMID:
35508660. PMCID:
PMC9159952.
66. Baron-Cohen S, Auyeung B, Nørgaard-Pedersen B, Hougaard DM, Abdallah MW, Melgaard L, et al. Elevated fetal steroidogenic activity in autism. Mol Psychiatry. 2015; 20(3):369–376. DOI:
10.1038/mp.2014.48. PMID:
24888361. PMCID:
PMC4184868.
67. Majewska MD, Hill M, Urbanowicz E, Rok-Bujko P, Bieńkowski P, Namyslowska I, et al. Marked elevation of adrenal steroids, especially androgens, in
saliva of prepubertal autistic children. Eur Child Adolesc Psychiatry. 2014; 23(6):485–498. DOI:
10.1007/s00787-013-0472-0. PMID:
24043498. PMCID:
PMC4042015.
68. Erdogan MA, Bozkurt MF, Erbas O. Effects of prenatal testosterone exposure on the development of
autism-like behaviours in offspring of Wistar rats. Int J Dev Neurosci. 2022; 83(2):201–215. DOI:
10.1002/jdn.10248. PMID:
36573444.
69. Christensen J, Grønborg TK, Sørensen MJ, Schendel D, Parner ET, Pedersen LH, et al. Prenatal valproate exposure and risk of autism spectrum disorders
and childhood autism. JAMA. 2013; 309(16):1696–1703. DOI:
10.1001/jama.2013.2270. PMID:
23613074. PMCID:
PMC4511955.
70. Grgurevic N. Testing the extreme male hypothesis in the valproate mouse model;
sex-specific effects on plasma testosterone levels and tyrosine hydroxylase
expression in the anteroventral periventricular nucleus, but not on parental
behavior. Front Behav Neurosci. 2023; 17:1107226. DOI:
10.3389/fnbeh.2023.1107226. PMID:
36818606. PMCID:
PMC9932272.
71. Diviccaro S, Cioffi L, Falvo E, Giatti S, Melcangi RC. Allopregnanolone: an overview on its synthesis and
effects. J Neuroendocrinol. 2021; 34(2):e12996. DOI:
10.1111/jne.12996. PMID:
34189791. PMCID:
PMC9285581.
72. Lambert JJ, Belelli D, Hill-Venning C, Peters JA. Neurosteroids and GABAA receptor function. Trends Pharmacol Sci. 1995; 16(9):295–303. DOI:
10.1016/S0165-6147(00)89058-6. PMID:
7482994.
73. Pinna G, Uzunova V, Matsumoto K, Puia G, Mienville JM, Costa E, et al. Brain allopregnanolone regulates the potency of the GABAA
receptor agonist muscimol. Neuropharmacology. 2000; 39(3):440–448. DOI:
10.1016/S0028-3908(99)00149-5. PMID:
10698010.
74. Chew L, Sun KL, Sun W, Wang Z, Rajadas J, Flores RE, et al. Association of serum allopregnanolone with restricted and
repetitive behaviors in adult males with autism. Psychoneuroendocrinology. 2021; 123:105039. DOI:
10.1016/j.psyneuen.2020.105039. PMID:
33161257. PMCID:
PMC8428554.
75. Vacher CM, Lacaille H, O'Reilly JJ, Salzbank J, Bakalar D, Sebaoui S, et al. Placental endocrine function shapes cerebellar development and
social behavior. Nat Neurosci. 2021; 24(10):1392–1401. DOI:
10.1038/s41593-021-00896-4. PMID:
34400844. PMCID:
PMC8481124.
76. Mueller BR, Bale TL. Early prenatal stress impact on coping strategies and learning
performance is sex dependent. Physiol Behav. 2007; 91(1):55–65. DOI:
10.1016/j.physbeh.2007.01.017. PMID:
17367828.
78. Marsit CJ, Maccani MA, Padbury JF, Lester BM. Placental 11-beta hydroxysteroid dehydrogenase methylation is
associated with newborn growth and a measure of neurobehavioral
outcome. PLoS ONE. 2012; 7(3):e33794. DOI:
10.1371/journal.pone.0033794. PMID:
22432047. PMCID:
PMC3303854.
79. Howerton CL, Morgan CP, Fischer DB, Bale TL. O-GlcNAc transferase (OGT) as a placental biomarker of maternal
stress and reprogramming of CNS gene transcription in
development. Proc Natl Acad Sci USA. 2013; 110(13):5169–5174. DOI:
10.1073/pnas.1300065110. PMID:
23487789. PMCID:
PMC3612602.
80. Nugent BM, O'Donnell CM, Neill Epperson C, Bale TL. Placental H3K27me3 establishes female resilience to prenatal
insults. Nat Commun. 2018; 9(1):2555. DOI:
10.1038/s41467-018-04992-1. PMID:
29967448. PMCID:
PMC6028627.
81. Estes ML, Kimberley McAllister A. Maternal immune activation: implications for neuropsychiatric
disorders. Science. 2016; 353(6301):772–777. DOI:
10.1126/science.aag3194. PMID:
27540164. PMCID:
PMC5650490.
82. Smith SEP, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through
interleukin-6. J Neurosci. 2007; 27(40):10695–10702. DOI:
10.1523/JNEUROSCI.2178-07.2007. PMID:
17913903. PMCID:
PMC2387067.
83. Choi GB, Yim YS, Wong H, Kim S, Kim H, Kim SV, et al. The maternal interleukin-17a pathway in mice promotes autism-like
phenotypes in offspring. Science. 2016; 351(6276):933–939. DOI:
10.1126/science.aad0314. PMID:
26822608. PMCID:
PMC4782964.
84. Shin Yim Y, Park A, Berrios J, Lafourcade M, Pascual LM, Soares N, et al. Reversing behavioural abnormalities in mice exposed to maternal
inflammation. Nature. 2017; 549(7673):482–487. DOI:
10.1038/nature23909. PMID:
28902835. PMCID:
PMC5796433.
85. Kalish BT, Kim E, Finander B, Duffy EE, Kim H, Gilman CK, et al. Maternal immune activation in mice disrupts proteostasis in the
fetal brain. Nat Neurosci. 2021; 24(2):204–213. DOI:
10.1038/s41593-020-00762-9. PMID:
33361822. PMCID:
PMC7854524.
88. Torossian A, Saré RM, Loutaev I, Smith CB. Increased rates of cerebral protein synthesis in
Shank3 knockout mice: implications for a link between
synaptic protein deficit and dysregulated protein synthesis in autism
spectrum disorder/intellectual disability. Neurobiol Dis. 2021; 148:105213. DOI:
10.1016/j.nbd.2020.105213. PMID:
33276083.
90. Dudova I, Kasparova M, Markova D, Zemankova J, Beranova S, Urbanek T, et al. Screening for autism in preterm children with extremely low and
very low birth weight. Neuropsychiatr Dis Treat. 2014; 10:277–282. DOI:
10.2147/NDT.S57057. PMID:
24627633. PMCID:
PMC3931701.
91. Guy A, Seaton SE, Boyle EM, Draper ES, Field DJ, Manktelow BN, et al. Infants born late/moderately preterm are at increased risk for a
positive autism screen at 2 years of age. J Pediatr. 2015; 166(2):269–275.E3. DOI:
10.1016/j.jpeds.2014.10.053. PMID:
25477165.
92. Kuzniewicz MW, Wi S, Qian Y, Walsh EM, Armstrong MA, Croen LA. Prevalence and neonatal factors associated with autism spectrum
disorders in preterm infants. J Pediatr. 2014; 164(1):20–25. DOI:
10.1016/j.jpeds.2013.09.021. PMID:
24161222.
93. Limperopoulos C, Bassan H, Sullivan NR, Soul JS, Robertson RL Jr, Moore M, et al. Positive screening for autism in ex-preterm infants: prevalence
and risk factors. Pediatrics. 2008; 121(4):758–765. DOI:
10.1542/peds.2007-2158. PMID:
18381541. PMCID:
PMC2703587.
95. Horvath B, Lakatos F, Tóth C, Bödecs T, Bódis J. Silent chorioamnionitis and associated pregnancy outcomes: a
review of clinical data gathered over a 16-year period. J Perinat Med. 2014; 42(4):441–447. DOI:
10.1515/jpm-2013-0186. PMID:
24421211.
97. Nasef N, Shabaan AE, Schurr P, Iaboni D, Choudhury J, Church P, et al. Effect of clinical and histological chorioamnionitis on the
outcome of preterm infants. Am J Perinatol. 2013; 30(01):059–068. DOI:
10.1055/s-0032-1321501. PMID:
22773280.
98. Allard MJ, Bergeron JD, Baharnoori M, Srivastava LK, Fortier LC, Poyart C, et al. A sexually dichotomous, autistic-like phenotype is induced by
group B
Streptococcus maternofetal immune
activation. Autism Res. 2016; 10(2):233–245. DOI:
10.1002/aur.1647. PMID:
27220806.
99. Braun AE, Carpentier PA, Babineau BA, Narayan AR, Kielhold ML, Moon HM, et al. "Females are not just 'Protected'
males": sex-specific vulnerabilities in placenta and brain after
prenatal immune disruption. eNeuro. 2019; 6(6):ENEURO.0358-19.2019. DOI:
10.1523/ENEURO.0358-19.2019. PMID:
31611335. PMCID:
PMC6838689.
100. Carlezon WA Jr, Kim W, Missig G, Finger BC, Landino SM, Alexander AJ, et al. Maternal and early postnatal immune activation produce
sex-specific effects on autism-like behaviors and neuroimmune function in
mice. Sci Rep. 2019; 9(1):16928. DOI:
10.1038/s41598-019-53294-z. PMID:
31729416. PMCID:
PMC6858355.
101. Werling DM, Pochareddy S, Choi J, An JY, Sheppard B, Peng M, et al. Whole-genome and RNA sequencing reveal variation and
transcriptomic coordination in the developing human prefrontal
cortex. Cell Rep. 2020; 31(1):107489. DOI:
10.1016/j.celrep.2020.03.053. PMID:
32268104. PMCID:
PMC7295160.
103. Chung C, Yang X, Bae T, Vong KI, Mittal S, Donkels C, et al. Comprehensive multi-omic profiling of somatic mutations in
malformations of cortical development. Nat Genet. 2023; 55(2):209–220. DOI:
10.1038/s41588-022-01276-9. PMID:
36635388. PMCID:
PMC9961399.
104. Lee T, Lee H, Kim S, Park KJ, An JY, Kim HW. Brief report: risk variants could inform early neurodevelopmental
outcome in children with developmental disabilities. J Autism Dev Disord. 2022; Sep 7. [Epub]. DOI:
10.1007/s10803-022-05735-4.