Ewha Med J.  2024 Apr;47(2):e18. 10.12771/emj.2024.e18.

Etiologies underlying sex bias in autism spectrum disorder: a narrative review of preclinical rodent models

Affiliations
  • 1BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
  • 2Department of Neuroscience, Korea University College of Medicine, Seoul, Korea

Abstract

Neurodevelopmental disorders, which emerge early in development, include a range of neurological phenotypes and exhibit marked differences in prevalence between sexes. A male predominance is particularly pronounced in autism spectrum disorder (ASD). Although the precise cause of ASD is still unknown, certain genetic variations and environmental influences have been implicated as risk factors. Preclinical ASD models have been instrumental in shedding light on the mechanisms behind the sexual dimorphism observed in this disorder. In this review, we explore the potential processes contributing to sex bias by examining both intrinsic differences in neuronal mechanisms and the influence of external factors. We organize these mechanisms into six categories: 1) sexually dimorphic phenotypes in mice with mutations in ASD-associated genes related to synaptic dysfunction; 2) sex-specific microglial activity, which may disrupt neural circuit development by excessively pruning synapses during critical periods; 3) sex steroid hormones, such as testosterone and allopregnanolone, that differentially influence brain structure and function; 4) escape from X chromosome inactivation of the O-linked-Nacetylglucosamine transferase gene in the placenta; 5) sexually dimorphic activation of the integrated stress response pathway following maternal immune activation; and 6) immunological responses that are differentially regulated by sex. Understanding these mechanisms is essential for deciphering the underlying causes of ASD and may offer insights into other disorders with notable sex disparities.

Keyword

Autism spectrum disorder; Genetic variation; Pregnancy; Risk factors; Sex characteristics

Reference

References

1. Morris-Rosendahl DJ, Crocq MA. Neurodevelopmental disorders—the history and future of a diagnostic concept. Dialogues Clin Neurosci. 2020; 22(1):65–72. DOI: 10.31887/DCNS.2020.22.1/macrocq. PMID: 32699506. PMCID: PMC7365295.
2. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®). 5th ed. Washington: American Psychiatric Association;2013. DOI: 10.1176/appi.books.9780890425596.
3. Fombonne E. Epidemiology of pervasive developmental disorders. Pediatr Res. 2009; 65(6):591–598. DOI: 10.1203/PDR.0b013e31819e7203. PMID: 19218885.
4. Werling DM, Geschwind DH. Sex differences in autism spectrum disorders. Curr Opin Neurol. 2013; 26(2):146–153. DOI: 10.1097/WCO.0b013e32835ee548. PMID: 23406909. PMCID: PMC4164392.
5. Loomes R, Hull L, Mandy WPL. What is the male-to-female ratio in autism spectrum disorder? A systematic review and meta-analysis. J Am Acad Child Adolesc Psychiatry. 2017; 56(6):466–474. DOI: 10.1016/j.jaac.2017.03.013. PMID: 28545751.
6. Hull L, Petrides KV, Mandy W. The female autism phenotype and camouflaging: a narrative review. Rev J Autism Dev Disord. 2020; 7(4):306–317. DOI: 10.1007/s40489-020-00197-9.
7. Zwaigenbaum L, Bryson SE, Szatmari P, Brian J, Smith IM, Roberts W, et al. Sex differences in children with autism spectrum disorder identified within a high-risk infant cohort. J Autism Dev Disord. 2012; 42(12):2585–2596. DOI: 10.1007/s10803-012-1515-y. PMID: 22453928.
8. Silverman JL, Thurm A, Ethridge SB, Soller MM, Petkova SP, Abel T, et al. Reconsidering animal models used to study autism spectrum disorder: current state and optimizing future. Genes Brain Behav. 2022; 21(5):e12803. DOI: 10.1111/gbb.12803. PMID: 35285132. PMCID: PMC9189007.
9. Pensado-López A, Veiga-Rúa S, Carracedo Á, Allegue C, Sánchez L. Experimental models to study autism spectrum disorders: hiPSCs, rodents and zebrafish. Genes. 2020; 11(11):1376. DOI: 10.3390/genes11111376. PMID: 33233737. PMCID: PMC7699923.
10. Kazdoba TM, Leach PT, Yang M, Silverman JL, Solomon M, Crawley JN. Translational mouse models of autism: advancing toward pharmacological therapeutics. Curr Top Behav Neurosci. 2016; 28:1–52. DOI: 10.1007/7854_2015_5003. PMID: 27305922. PMCID: PMC5116923.
11. Jabarin R, Netser S, Wagner S. Beyond the three-chamber test: toward a multimodal and objective assessment of social behavior in rodents. Mol Autism. 2022; 13(1):41. DOI: 10.1186/s13229-022-00521-6. PMID: 36284353. PMCID: PMC9598038.
12. Mohammad-Rezazadeh I, Frohlich J, Loo SK, Jeste SS. Brain connectivity in autism spectrum disorder. Curr Opin Neurol. 2016; 29(2):137–147. DOI: 10.1097/WCO.0000000000000301. PMID: 26910484. PMCID: PMC4843767.
13. Maximo JO, Cadena EJ, Kana RK. The implications of brain connectivity in the neuropsychology of autism. Neuropsychol Rev. 2014; 24(1):16–31. DOI: 10.1007/s11065-014-9250-0. PMID: 24496901. PMCID: PMC4059500.
14. Guang S, Pang N, Deng X, Yang L, He F, Wu L, et al. Synaptopathology involved in autism spectrum disorder. Front Cell Neurosci. 2018; 12:470. DOI: 10.3389/fncel.2018.00470. PMID: 30627085. PMCID: PMC6309163.
15. Banerjee-Basu S, Packer A. SFARI Gene: an evolving database for the autism research community. Dis Model Mech. 2010; 3(3-4):133–135. DOI: 10.1242/dmm.005439. PMID: 20212079.
16. Abrahams BS, Arking DE, Campbell DB, Mefford HC, Morrow EM, Weiss LA, et al. SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol Autism. 2013; 4(1):36. DOI: 10.1186/2040-2392-4-36. PMID: 24090431. PMCID: PMC3851189.
17. Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014; 515(7526):216–221. DOI: 10.1038/nature13908. PMID: 25363768. PMCID: PMC4313871.
18. Choi L, An JY. Genetic architecture of autism spectrum disorder: lessons from large-scale genomic studies. Neurosci Biobehav Rev. 2021; 128:244–257. DOI: 10.1016/j.neubiorev.2021.06.028. PMID: 34166716.
19. Wang T, Guo H, Xiong B, Stessman HAF, Wu H, Coe BP, et al. De novo genic mutations among a Chinese autism spectrum disorder cohort. Nat Commun. 2016; 7:13316. DOI: 10.1038/ncomms13316. PMID: 27824329. PMCID: PMC5105161.
20. Stessman HAF, Xiong B, Coe BP, Wang T, Hoekzema K, Fenckova M, et al. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat Genet. 2017; 49(4):515–526. DOI: 10.1038/ng.3792. PMID: 28191889. PMCID: PMC5374041.
21. Ellingford RA, Panasiuk MJ, de Meritens ER, Shaunak R, Naybour L, Browne L, et al. Cell-type-specific synaptic imbalance and disrupted homeostatic plasticity in cortical circuits of ASD-associated Chd8 haploinsufficient mice. Mol Psychiatry. 2021; 26(7):3614–3624. DOI: 10.1038/s41380-021-01070-9. PMID: 33837267. PMCID: PMC8505247.
22. Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007; 39(1):25–27. DOI: 10.1038/ng1933. PMID: 17173049. PMCID: PMC2082049.
23. Betancur C, Buxbaum JD. SHANK3 haploinsufficiency: a "common" but underdiagnosed highly penetrant monogenic cause of autism spectrum disorders. Mol Autism. 2013; 4(1):17. DOI: 10.1186/2040-2392-4-17. PMID: 23758743. PMCID: PMC3695795.
24. Monteiro P, Feng G. SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci. 2017; 18(3):147–157. DOI: 10.1038/nrn.2016.183. PMID: 28179641.
25. Peca J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011; 472(7344):437–442. DOI: 10.1038/nature09965. PMID: 21423165. PMCID: PMC3090611.
26. Maloney SE, Sarafinovska S, Weichselbaum C, McCullough KB, Swift RG, Liu Y, et al. A comprehensive assay of social motivation reveals sex-specific roles of autism-associated genes and oxytocin. Cell Rep Methods. 2023; 3(6):100504. DOI: 10.1016/j.crmeth.2023.100504. PMID: 37426756. PMCID: PMC10326376.
27. Matas E, Maisterrena A, Thabault M, Balado E, Francheteau M, Balbous A, et al. Major motor and gait deficits with sexual dimorphism in a Shank3 mutant mouse model. Mol Autism. 2021; 12(1):2. DOI: 10.1186/s13229-020-00412-8. PMID: 33468258. PMCID: PMC7814442.
28. Moretto E, Murru L, Martano G, Sassone J, Passafaro M. Glutamatergic synapses in neurodevelopmental disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2018; 84(Pt B):328–342. DOI: 10.1016/j.pnpbp.2017.09.014. PMID: 28935587.
29. Bourgeron T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci. 2015; 16(9):551–563. DOI: 10.1038/nrn3992. PMID: 26289574.
30. Barnard RA, Pomaville MB, O'Roak BJ. Mutations and modeling of the chromatin remodeler CHD8 define an emerging autism etiology. Front Neurosci. 2015; 9:477. DOI: 10.3389/fnins.2015.00477. PMID: 26733790. PMCID: PMC4681771.
31. Nishiyama M, Nakayama K, Tsunematsu R, Tsukiyama T, Kikuchi A, Nakayama KI. Early embryonic death in mice lacking the β-catenin-binding protein Duplin. Mol Cell Biol. 2004; 24(19):8386–8394. DOI: 10.1128/MCB.24.19.8386-8394.2004. PMID: 15367660. PMCID: PMC516734.
32. Katayama Y, Nishiyama M, Shoji H, Ohkawa Y, Kawamura A, Sato T, et al. CHD8 haploinsufficiency results in autistic-like phenotypes in mice. Nature. 2016; 537(7622):675–679. DOI: 10.1038/nature19357. PMID: 27602517.
33. Durak O, Gao F, Kaeser-Woo YJ, Rueda R, Martorell AJ, Nott A, et al. Chd8 mediates cortical neurogenesis via transcriptional regulation of cell cycle and Wnt signaling. Nat Neurosci. 2016; 19(11):1477–1488. DOI: 10.1038/nn.4400. PMID: 27694995. PMCID: PMC5386887.
34. Gompers AL, Su-Feher L, Ellegood J, Copping NA, Asrafuzzaman Riyadh M, Stradleigh TW, et al. Germline Chd8 haploinsufficiency alters brain development in mouse. Nat Neurosci. 2017; 20(8):1062–1073. DOI: 10.1038/nn.4592. PMID: 28671691. PMCID: PMC6008102.
35. Platt RJ, Zhou Y, Slaymaker IM, Shetty AS, Weisbach NR, Kim JA, et al. Chd8 mutation leads to autistic-like behaviors and impaired striatal circuits. Cell Rep. 2017; 19(2):335–350. DOI: 10.1016/j.celrep.2017.03.052. PMID: 28402856. PMCID: PMC5455342.
36. Suetterlin P, Hurley S, Mohan C, Riegman KLH, Pagani M, Caruso A, et al. Altered neocortical gene expression, brain overgrowth and functional over-connectivity in Chd8 haploinsufficient mice. Cereb Cortex. 2018; 28(6):2192–2206. DOI: 10.1093/cercor/bhy058. PMID: 29668850. PMCID: PMC6018918.
37. Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP, Penn O, et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell. 2014; 158(2):263–276. DOI: 10.1016/j.cell.2014.06.017. PMID: 24998929. PMCID: PMC4136921.
38. O'Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science. 2012; 338(6114):1619–1622. DOI: 10.1126/science.1227764. PMID: 23160955. PMCID: PMC3528801.
39. Merner N, Forgeot d'Arc B, Bell SC, Maussion G, Peng H, Gauthier J, et al. A de novo frameshift mutation in chromodomain helicase DNA-binding domain 8 (CHD8): a case report and literature review. Am J Med Genet A. 2016; 170(5):1225–1235. DOI: 10.1002/ajmg.a.37566. PMID: 26789910.
40. Jung H, Park H, Choi Y, Kang H, Lee E, Kweon H, et al. Sexually dimorphic behavior, neuronal activity, and gene expression in Chd8-mutant mice. Nat Neurosci. 2018; 21(9):1218–1228. DOI: 10.1038/s41593-018-0208-z. PMID: 30104731.
41. Davis JK, Broadie K. Multifarious functions of the fragile X mental retardation protein. Trends Genet. 2017; 33(10):703–714. DOI: 10.1016/j.tig.2017.07.008. PMID: 28826631. PMCID: PMC5610095.
42. Pacey LKK, Xuan ICY, Guan S, Sussman D, Mark Henkelman R, Chen Y, et al. Delayed myelination in a mouse model of fragile X syndrome. Hum Mol Genet. 2013; 22(19):3920–3930. DOI: 10.1093/hmg/ddt246. PMID: 23740941.
43. Qin M, Entezam A, Usdin K, Huang T, Liu ZH, Hoffman GE, et al. A mouse model of the fragile X premutation: effects on behavior, dendrite morphology, and regional rates of cerebral protein synthesis. Neurobiol Dis. 2011; 42(1):85–98. DOI: 10.1016/j.nbd.2011.01.008. PMID: 21220020. PMCID: PMC3150744.
44. Wang Z, Qiao D, Chen H, Zhang S, Zhang B, Zhang J, et al. Effects of Fmr1 gene mutations on sex differences in autism-like behavior and dendritic spine development in mice and transcriptomic studies. Neuroscience. 2023; 534:16–28. DOI: 10.1016/j.neuroscience.2023.10.001. PMID: 37852411.
45. Luo J, Norris RH, Gordon SL, Nithianantharajah J. Neurodevelopmental synaptopathies: insights from behaviour in rodent models of synapse gene mutations. Prog Neuropsychopharmacol Biol Psychiatry. 2018; 84(Pt B):424–439. DOI: 10.1016/j.pnpbp.2017.12.001. PMID: 29217145.
46. Tatti R, Haley MS, Swanson OK, Tselha T, Maffei A. Neurophysiology and regulation of the balance between excitation and inhibition in neocortical circuits. Biol Psychiatry. 2017; 81(10):821–831. DOI: 10.1016/j.biopsych.2016.09.017. PMID: 27865453. PMCID: PMC5374043.
47. Hollestein V, Poelmans G, Forde NJ, Beckmann CF, Ecker C, Mann C, et al. Excitatory/inhibitory imbalance in autism: the role of glutamate and GABA gene-sets in symptoms and cortical brain structure. Transl Psychiatry. 2023; 13(1):18. DOI: 10.1038/s41398-023-02317-5. PMID: 36681677. PMCID: PMC9867712.
48. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011; 333(6048):1456–1458. DOI: 10.1126/science.1202529. PMID: 21778362.
49. Koyama R, Ikegaya Y. Microglia in the pathogenesis of autism spectrum disorders. Neurosci Res. 2015; 100:1–5. DOI: 10.1016/j.neures.2015.06.005. PMID: 26116891.
50. Guneykaya D, Ivanov A, Hernandez DP, Haage V, Wojtas B, Meyer N, et al. Transcriptional and translational differences of microglia from male and female brains. Cell Rep. 2018; 24(10):2773–2783.E6. DOI: 10.1016/j.celrep.2018.08.001. PMID: 30184509.
51. Schwarz JM, Sholar PW, Bilbo SD. Sex differences in microglial colonization of the developing rat brain. J Neurochem. 2012; 120(6):948–963. DOI: 10.1111/j.1471-4159.2011.07630.x. PMID: 22182318. PMCID: PMC3296888.
52. McCarthy MM, Nugent BM, Lenz KM. Neuroimmunology and neuroepigenetics in the establishment of sex differences in the brain. Nat Rev Neurosci. 2017; 18(8):471–484. DOI: 10.1038/nrn.2017.61. PMID: 28638119. PMCID: PMC5771241.
53. Alarcón M, Abrahams BS, Stone JL, Duvall JA, Perederiy JV, Bomar JM, et al. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet. 2008; 82(1):150–159. DOI: 10.1016/j.ajhg.2007.09.005. PMID: 18179893. PMCID: PMC2253955.
54. Varea O, Martin-de-Saavedra MD, Kopeikina KJ, Schürmann B, Fleming HJ, Fawcett-Patel JM, et al. Synaptic abnormalities and cytoplasmic glutamate receptor aggregates in contactin associated protein-like 2/Caspr2 knockout neurons. Proc Natl Acad Sci USA. 2015; 112(19):6176–6181. DOI: 10.1073/pnas.1423205112. PMID: 25918374. PMCID: PMC4434727.
55. Anderson GR, Galfin T, Xu W, Aoto J, Malenka RC, Südhof TC. Candidate autism gene screen identifies critical role for cell-adhesion molecule CASPR2 in dendritic arborization and spine development. Proc Natl Acad Sci USA. 2012; 109(44):18120–18125. DOI: 10.1073/pnas.1216398109. PMID: 23074245. PMCID: PMC3497786.
56. Lazaro MT, Taxidis J, Shuman T, Bachmutsky I, Ikrar T, Santos R, et al. Reduced prefrontal synaptic connectivity and disturbed oscillatory population dynamics in the CNTNAP2 model of autism. Cell Rep. 2019; 27(9):2567–2578.E6. DOI: 10.1016/j.celrep.2019.05.006. PMID: 31141683. PMCID: PMC6553483.
57. Peñagarikano O, Geschwind DH. What does CNTNAP2 reveal about autism spectrum disorder? Trends Mol Med. 2012; 18(3):156–163. DOI: 10.1016/j.molmed.2012.01.003. PMID: 22365836. PMCID: PMC3633421.
58. Dawson MS, Gordon-Fleet K, Yan L, Tardos V, He H, Mui K, et al. Sexual dimorphism in the social behaviour of Cntnap2-null mice correlates with disrupted synaptic connectivity and increased microglial activity in the anterior cingulate cortex. Commun Biol. 2023; 6(1):846. DOI: 10.1038/s42003-023-05215-0. PMID: 37582968. PMCID: PMC10427688.
59. Rahman MM, Shu YH, Chow T, Lurmann FW, Yu X, Martinez MP, et al. Prenatal exposure to air pollution and autism spectrum disorder: sensitive windows of exposure and sex differences. Environ Health Perspect. 2022; 130(1):017008-1–017008-9. DOI: 10.1289/EHP9509. PMID: 35040691. PMCID: PMC8765363.
60. Volk HE, Lurmann F, Penfold B, Hertz-Picciotto I, McConnell R. Traffic-related air pollution, particulate matter, and autism. JAMA Psychiatry. 2013; 70(1):71–77. DOI: 10.1001/jamapsychiatry.2013.266. PMID: 23404082. PMCID: PMC4019010.
61. Roberts AL, Koenen KC, Lyall K, Ascherio A, Weisskopf MG. Women's posttraumatic stress symptoms and autism spectrum disorder in their children. Res Autism Spectr Disord. 2014; 8(6):608–616. DOI: 10.1016/j.rasd.2014.02.004. PMID: 24855487. PMCID: PMC4025916.
62. Kinney DK, Munir KM, Crowley DJ, Miller AM. Prenatal stress and risk for autism. Neurosci Biobehav Rev. 2008; 32(8):1519–1532. DOI: 10.1016/j.neubiorev.2008.06.004. PMID: 18598714. PMCID: PMC2632594.
63. Smith CJ, Rendina DN, Kingsbury MA, Malacon KE, Nguyen DM, Tran JJ, et al. Microbial modulation via cross-fostering prevents the effects of pervasive environmental stressors on microglia and social behavior, but not the dopamine system. Mol Psychiatry. 2023; 28(6):2549–2562. DOI: 10.1038/s41380-023-02108-w. PMID: 37198262. PMCID: PMC10719943.
64. Gegenhuber B, Wu MV, Bronstein R, Tollkuhn J. Gene regulation by gonadal hormone receptors underlies brain sex differences. Nature. 2022; 606(7912):153–159. DOI: 10.1038/s41586-022-04686-1. PMID: 35508660. PMCID: PMC9159952.
65. Ferri SL, Abel T, Brodkin ES. Sex differences in autism spectrum disorder: a review. Curr Psychiatry Rep. 2018; 20(2):9. DOI: 10.1007/s11920-018-0874-2. PMID: 29504047. PMCID: PMC6477922.
66. Baron-Cohen S, Auyeung B, Nørgaard-Pedersen B, Hougaard DM, Abdallah MW, Melgaard L, et al. Elevated fetal steroidogenic activity in autism. Mol Psychiatry. 2015; 20(3):369–376. DOI: 10.1038/mp.2014.48. PMID: 24888361. PMCID: PMC4184868.
67. Majewska MD, Hill M, Urbanowicz E, Rok-Bujko P, Bieńkowski P, Namyslowska I, et al. Marked elevation of adrenal steroids, especially androgens, in saliva of prepubertal autistic children. Eur Child Adolesc Psychiatry. 2014; 23(6):485–498. DOI: 10.1007/s00787-013-0472-0. PMID: 24043498. PMCID: PMC4042015.
68. Erdogan MA, Bozkurt MF, Erbas O. Effects of prenatal testosterone exposure on the development of autism-like behaviours in offspring of Wistar rats. Int J Dev Neurosci. 2022; 83(2):201–215. DOI: 10.1002/jdn.10248. PMID: 36573444.
69. Christensen J, Grønborg TK, Sørensen MJ, Schendel D, Parner ET, Pedersen LH, et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA. 2013; 309(16):1696–1703. DOI: 10.1001/jama.2013.2270. PMID: 23613074. PMCID: PMC4511955.
70. Grgurevic N. Testing the extreme male hypothesis in the valproate mouse model; sex-specific effects on plasma testosterone levels and tyrosine hydroxylase expression in the anteroventral periventricular nucleus, but not on parental behavior. Front Behav Neurosci. 2023; 17:1107226. DOI: 10.3389/fnbeh.2023.1107226. PMID: 36818606. PMCID: PMC9932272.
71. Diviccaro S, Cioffi L, Falvo E, Giatti S, Melcangi RC. Allopregnanolone: an overview on its synthesis and effects. J Neuroendocrinol. 2021; 34(2):e12996. DOI: 10.1111/jne.12996. PMID: 34189791. PMCID: PMC9285581.
72. Lambert JJ, Belelli D, Hill-Venning C, Peters JA. Neurosteroids and GABAA receptor function. Trends Pharmacol Sci. 1995; 16(9):295–303. DOI: 10.1016/S0165-6147(00)89058-6. PMID: 7482994.
73. Pinna G, Uzunova V, Matsumoto K, Puia G, Mienville JM, Costa E, et al. Brain allopregnanolone regulates the potency of the GABAA receptor agonist muscimol. Neuropharmacology. 2000; 39(3):440–448. DOI: 10.1016/S0028-3908(99)00149-5. PMID: 10698010.
74. Chew L, Sun KL, Sun W, Wang Z, Rajadas J, Flores RE, et al. Association of serum allopregnanolone with restricted and repetitive behaviors in adult males with autism. Psychoneuroendocrinology. 2021; 123:105039. DOI: 10.1016/j.psyneuen.2020.105039. PMID: 33161257. PMCID: PMC8428554.
75. Vacher CM, Lacaille H, O'Reilly JJ, Salzbank J, Bakalar D, Sebaoui S, et al. Placental endocrine function shapes cerebellar development and social behavior. Nat Neurosci. 2021; 24(10):1392–1401. DOI: 10.1038/s41593-021-00896-4. PMID: 34400844. PMCID: PMC8481124.
76. Mueller BR, Bale TL. Early prenatal stress impact on coping strategies and learning performance is sex dependent. Physiol Behav. 2007; 91(1):55–65. DOI: 10.1016/j.physbeh.2007.01.017. PMID: 17367828.
77. Mueller BR, Bale TL. Sex-specific programming of offspring emotionality after stress early in pregnancy. J Neurosci. 2008; 28(36):9055–9065. DOI: 10.1523/JNEUROSCI.1424-08.2008. PMID: 18768700. PMCID: PMC2731562.
78. Marsit CJ, Maccani MA, Padbury JF, Lester BM. Placental 11-beta hydroxysteroid dehydrogenase methylation is associated with newborn growth and a measure of neurobehavioral outcome. PLoS ONE. 2012; 7(3):e33794. DOI: 10.1371/journal.pone.0033794. PMID: 22432047. PMCID: PMC3303854.
79. Howerton CL, Morgan CP, Fischer DB, Bale TL. O-GlcNAc transferase (OGT) as a placental biomarker of maternal stress and reprogramming of CNS gene transcription in development. Proc Natl Acad Sci USA. 2013; 110(13):5169–5174. DOI: 10.1073/pnas.1300065110. PMID: 23487789. PMCID: PMC3612602.
80. Nugent BM, O'Donnell CM, Neill Epperson C, Bale TL. Placental H3K27me3 establishes female resilience to prenatal insults. Nat Commun. 2018; 9(1):2555. DOI: 10.1038/s41467-018-04992-1. PMID: 29967448. PMCID: PMC6028627.
81. Estes ML, Kimberley McAllister A. Maternal immune activation: implications for neuropsychiatric disorders. Science. 2016; 353(6301):772–777. DOI: 10.1126/science.aag3194. PMID: 27540164. PMCID: PMC5650490.
82. Smith SEP, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci. 2007; 27(40):10695–10702. DOI: 10.1523/JNEUROSCI.2178-07.2007. PMID: 17913903. PMCID: PMC2387067.
83. Choi GB, Yim YS, Wong H, Kim S, Kim H, Kim SV, et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science. 2016; 351(6276):933–939. DOI: 10.1126/science.aad0314. PMID: 26822608. PMCID: PMC4782964.
84. Shin Yim Y, Park A, Berrios J, Lafourcade M, Pascual LM, Soares N, et al. Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature. 2017; 549(7673):482–487. DOI: 10.1038/nature23909. PMID: 28902835. PMCID: PMC5796433.
85. Kalish BT, Kim E, Finander B, Duffy EE, Kim H, Gilman CK, et al. Maternal immune activation in mice disrupts proteostasis in the fetal brain. Nat Neurosci. 2021; 24(2):204–213. DOI: 10.1038/s41593-020-00762-9. PMID: 33361822. PMCID: PMC7854524.
86. Pakos‐Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM. The integrated stress response. EMBO Rep. 2016; 17(10):1374–1395. DOI: 10.15252/embr.201642195. PMID: 27629041. PMCID: PMC5048378.
87. Kelleher RJ 3rd, Bear MF. The autistic neuron: troubled translation? Cell. 2008; 135(3):401–406. DOI: 10.1016/j.cell.2008.10.017. PMID: 18984149.
88. Torossian A, Saré RM, Loutaev I, Smith CB. Increased rates of cerebral protein synthesis in Shank3 knockout mice: implications for a link between synaptic protein deficit and dysregulated protein synthesis in autism spectrum disorder/intellectual disability. Neurobiol Dis. 2021; 148:105213. DOI: 10.1016/j.nbd.2020.105213. PMID: 33276083.
89. Wood H. Integrated stress response mediates cognitive decline in Down syndrome. Nat Rev Neurol. 2020; 16(1):3. DOI: 10.1038/s41582-019-0298-6. PMID: 31802033.
90. Dudova I, Kasparova M, Markova D, Zemankova J, Beranova S, Urbanek T, et al. Screening for autism in preterm children with extremely low and very low birth weight. Neuropsychiatr Dis Treat. 2014; 10:277–282. DOI: 10.2147/NDT.S57057. PMID: 24627633. PMCID: PMC3931701.
91. Guy A, Seaton SE, Boyle EM, Draper ES, Field DJ, Manktelow BN, et al. Infants born late/moderately preterm are at increased risk for a positive autism screen at 2 years of age. J Pediatr. 2015; 166(2):269–275.E3. DOI: 10.1016/j.jpeds.2014.10.053. PMID: 25477165.
92. Kuzniewicz MW, Wi S, Qian Y, Walsh EM, Armstrong MA, Croen LA. Prevalence and neonatal factors associated with autism spectrum disorders in preterm infants. J Pediatr. 2014; 164(1):20–25. DOI: 10.1016/j.jpeds.2013.09.021. PMID: 24161222.
93. Limperopoulos C, Bassan H, Sullivan NR, Soul JS, Robertson RL Jr, Moore M, et al. Positive screening for autism in ex-preterm infants: prevalence and risk factors. Pediatrics. 2008; 121(4):758–765. DOI: 10.1542/peds.2007-2158. PMID: 18381541. PMCID: PMC2703587.
94. Jain VG, Willis KA, Jobe A, Ambalavanan N. Chorioamnionitis and neonatal outcomes. Pediatr Res. 2022; 91(2):289–296. DOI: 10.1038/s41390-021-01633-0. PMID: 34211129. PMCID: PMC8720117.
95. Horvath B, Lakatos F, Tóth C, Bödecs T, Bódis J. Silent chorioamnionitis and associated pregnancy outcomes: a review of clinical data gathered over a 16-year period. J Perinat Med. 2014; 42(4):441–447. DOI: 10.1515/jpm-2013-0186. PMID: 24421211.
96. Larsen JW, Sever JL. Group B Streptococcus and pregnancy: a review. Am J Obstet Gynecol. 2008; 198(4):440–450. DOI: 10.1016/j.ajog.2007.11.030. PMID: 18201679.
97. Nasef N, Shabaan AE, Schurr P, Iaboni D, Choudhury J, Church P, et al. Effect of clinical and histological chorioamnionitis on the outcome of preterm infants. Am J Perinatol. 2013; 30(01):059–068. DOI: 10.1055/s-0032-1321501. PMID: 22773280.
98. Allard MJ, Bergeron JD, Baharnoori M, Srivastava LK, Fortier LC, Poyart C, et al. A sexually dichotomous, autistic-like phenotype is induced by group B Streptococcus maternofetal immune activation. Autism Res. 2016; 10(2):233–245. DOI: 10.1002/aur.1647. PMID: 27220806.
99. Braun AE, Carpentier PA, Babineau BA, Narayan AR, Kielhold ML, Moon HM, et al. "Females are not just 'Protected' males": sex-specific vulnerabilities in placenta and brain after prenatal immune disruption. eNeuro. 2019; 6(6):ENEURO.0358-19.2019. DOI: 10.1523/ENEURO.0358-19.2019. PMID: 31611335. PMCID: PMC6838689.
100. Carlezon WA Jr, Kim W, Missig G, Finger BC, Landino SM, Alexander AJ, et al. Maternal and early postnatal immune activation produce sex-specific effects on autism-like behaviors and neuroimmune function in mice. Sci Rep. 2019; 9(1):16928. DOI: 10.1038/s41598-019-53294-z. PMID: 31729416. PMCID: PMC6858355.
101. Werling DM, Pochareddy S, Choi J, An JY, Sheppard B, Peng M, et al. Whole-genome and RNA sequencing reveal variation and transcriptomic coordination in the developing human prefrontal cortex. Cell Rep. 2020; 31(1):107489. DOI: 10.1016/j.celrep.2020.03.053. PMID: 32268104. PMCID: PMC7295160.
102. Kim S, Lee J, Koh IG, Ji J, Kim HJ, Kim E, et al. An integrative single-cell atlas to explore the cellular and temporal specificity of neurological disorder genes during human brain development [Internet]. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory;c2024. [cited 2024 Apr 11]. Available from: https://www.biorxiv.org/content/10.1101/2024.04.09.588220v1. DOI: 10.1101/2024.04.09.588220.
103. Chung C, Yang X, Bae T, Vong KI, Mittal S, Donkels C, et al. Comprehensive multi-omic profiling of somatic mutations in malformations of cortical development. Nat Genet. 2023; 55(2):209–220. DOI: 10.1038/s41588-022-01276-9. PMID: 36635388. PMCID: PMC9961399.
104. Lee T, Lee H, Kim S, Park KJ, An JY, Kim HW. Brief report: risk variants could inform early neurodevelopmental outcome in children with developmental disabilities. J Autism Dev Disord. 2022; Sep 7. [Epub]. DOI: 10.1007/s10803-022-05735-4.
Full Text Links
  • EMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr