1. Vieira de Sá R, Cañizares Luna M, Pasterkamp RJ. 2021; Advances in central nervous system organoids: a focus on organoid-based models for motor neuron disease. Tissue Eng Part C Methods. 27:213–224. DOI:
10.1089/ten.tec.2020.0337.
Article
2. Pacitti D, Privolizzi R, Bax BE. 2019; Organs to cells and cells to organoids: the evolution of
in vitro central nervous system modelling. Front Cell Neurosci. 13:129. DOI:
10.3389/fncel.2019.00129. PMID:
31024259. PMCID:
PMC6465581.
5. Hong YJ, Lee SB, Choi J, Yoon SH, Do JT. 2022; A simple method for generating cerebral organoids from human pluripotent stem cells. Int J Stem Cells. 15:95–103. DOI:
10.15283/ijsc21195. PMID:
35220295. PMCID:
PMC8889334.
Article
7. Chukwurah E, Osmundsen A, Davis SW, Lizarraga SB. 2019; All together now: modeling the interaction of neural with non-neural systems using organoid models. Front Neurosci. 13:582. DOI:
10.3389/fnins.2019.00582. PMID:
31293366. PMCID:
PMC6598414.
Article
9. Bhattacharya A, Choi WWY, Muffat J, Li Y. 2022; Modeling developmental brain diseases using human pluripotent stem cells-derived brain organoids - progress and perspective. J Mol Biol. 434:167386. DOI:
10.1016/j.jmb.2021.167386. PMID:
34883115.
Article
15. Grenier K, Kao J, Diamandis P. 2020; Three-dimensional modeling of human neurodegeneration: brain organoids coming of age. Mol Psychiatry. 25:254–274. DOI:
10.1038/s41380-019-0500-7. PMID:
31444473.
Article
17. Yadav A, Seth B, Chaturvedi RK. 2021; Brain organoids: tiny mirrors of human neurodevelopment and neurological disorders. Neuroscientist. 27:388–426. DOI:
10.1177/1073858420943192. PMID:
32723210.
Article
21. Kim SH, Chang MY. 2023; Application of human brain organoids-opportunities and challenges in modeling human brain development and neurodevelopmental diseases. Int J Mol Sci. 24:12528. DOI:
10.3390/ijms241512528. PMID:
37569905. PMCID:
PMC10420018.
Article
24. Korhonen P, Malm T, White AR. 2018; 3D human brain cell models: new frontiers in disease understanding and drug discovery for neurodegenerative diseases. Neurochem Int. 120:191–199. DOI:
10.1016/j.neuint.2018.08.012. PMID:
30176269.
Article
25. Liu S, He Y, Yin J, Zhu Q, Liao C, Jiang G. 2024; Neurotoxicities induced by micro/nanoplastics: a review focusing on the risks of neurological diseases. J Hazard Mater. 469:134054. DOI:
10.1016/j.jhazmat.2024.134054. PMID:
38503214.
Article
26. Casey S, Carter M, Looney AM, et al. 2022; Maternal mid-gestation cytokine dysregulation in mothers of children with autism spectrum disorder. J Autism Dev Disord. 52:3919–3932. DOI:
10.1007/s10803-021-05271-7. PMID:
34505185. PMCID:
PMC9349096.
Article
29. Berman NE, Johnson JK, Klein RM. 1997; Early generation of glia in the intermediate zone of the developing cerebral cortex. Brain Res Dev Brain Res. 101:149–164. DOI:
10.1016/S0165-3806(97)00060-6. PMID:
9263589.
Article
32. Paşca AM, Sloan SA, Clarke LE, et al. 2015; Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods. 12:671–678. DOI:
10.1038/nmeth.3415.
Article
33. Eiraku M, Watanabe K, Matsuo-Takasaki M, et al. 2008; Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell. 3:519–532. DOI:
10.1016/j.stem.2008.09.002. PMID:
18983967.
Article
35. Matsumoto R, Suga H, Aoi T, et al. 2020; Congenital pituitary hypoplasia model demonstrates hypothalamic OTX2 regulation of pituitary progenitor cells. J Clin Invest. 130:641–654. DOI:
10.1172/JCI127378. PMID:
31845906. PMCID:
PMC6994153.
Article
36. Nakano T, Ando S, Takata N, et al. 2012; Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 10:771–785. DOI:
10.1016/j.stem.2012.05.009. PMID:
22704518.
Article
37. Pomeshchik Y, Klementieva O, Gil J, et al. 2021; Human iPSC-derived hippocampal spheroids: an innovative tool for stratifying Alzheimer disease patient-specific cellular phenotypes and developing therapies. Stem Cell Reports. 16:2838. DOI:
10.1016/j.stemcr.2021.10.003. PMID:
34758331. PMCID:
PMC8581187.
Article
39. Jo J, Xiao Y, Sun AX, et al. 2016; Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell. 19:248–257. DOI:
10.1016/j.stem.2016.07.005. PMID:
27476966. PMCID:
PMC5510242.
Article
41. Kim H, Xu R, Padmashri R, et al. 2019; Pluripotent stem cell-derived cerebral organoids reveal human oligodendrogenesis with dorsal and ventral origins. Stem Cell Reports. 12:890–905. DOI:
10.1016/j.stemcr.2019.04.011. PMID:
31091434. PMCID:
PMC6524754.
Article
42. Mills RJ, Parker BL, Quaife-Ryan GA, et al. 2019; Drug screening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway. Cell Stem Cell. 24:895–907.e6. DOI:
10.1016/j.stem.2019.03.009. PMID:
30930147.
Article
43. Takebe T, Sekine K, Enomura M, et al. 2013; Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 499:481–484. DOI:
10.1038/nature12271. PMID:
23823721.
Article
44. Takebe T, Enomura M, Yoshizawa E, et al. 2015; Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation. Cell Stem Cell. 16:556–565. DOI:
10.1016/j.stem.2015.03.004. PMID:
25891906.
Article
46. Takasato M, Er PX, Becroft M, et al. 2014; Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol. 16:118–126. DOI:
10.1038/ncb2894. PMID:
24335651.
Article
47. Li R, Sun L, Fang A, Li P, Wu Q, Wang X. 2017; Recapitulating cortical development with organoid culture
in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease. Protein Cell. 8:823–833. DOI:
10.1007/s13238-017-0479-2. PMID:
29058117. PMCID:
PMC5676597.
Article
53. Wang P, Mokhtari R, Pedrosa E, et al. 2017; CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Mol Autism. 8:11. DOI:
10.1186/s13229-017-0124-1. PMID:
28321286. PMCID:
PMC5357816.
Article
54. Hali S, Kim J, Kwak TH, Lee H, Shin CY, Han DW. 2020; Modelling monogenic autism spectrum disorder using mouse cortical organoids. Biochem Biophys Res Commun. 521:164–171. DOI:
10.1016/j.bbrc.2019.10.097. PMID:
31653345.
Article
55. Mellios N, Feldman DA, Sheridan SD, et al. 2018; MeCP2-regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling. Mol Psychiatry. 23:1051–1065. DOI:
10.1038/mp.2017.86. PMID:
28439102. PMCID:
PMC5815944.
Article
58. Xu R, Brawner AT, Li S, et al. 2019; OLIG2 drives abnormal neurodevelopmental phenotypes in human iPSC-based organoid and chimeric mouse models of Down syndrome. Cell Stem Cell. 24:908–926.e8. DOI:
10.1016/j.stem.2019.04.014. PMID:
31130512. PMCID:
PMC6944064.
Article
59. Tang XY, Xu L, Wang J, et al. 2021; DSCAM/PAK1 pathway suppression reverses neurogenesis deficits in iPSC-derived cerebral organoids from patients with Down syndrome. J Clin Invest. 131:e135763. DOI:
10.1172/JCI135763. PMID:
33945512. PMCID:
PMC8203468.
Article
60. Jin M, Pomp O, Shinoda T, et al. 2017; Katanin p80, NuMA and cytoplasmic dynein cooperate to control microtubule dynamics. Sci Rep. 7:39902. DOI:
10.1038/srep39902. PMID:
28079116. PMCID:
PMC5228124.
Article
62. Yin J, VanDongen AM. 2021; Enhanced neuronal activity and asynchronous calcium transients revealed in a 3D organoid model of Alzheimer's disease. ACS Biomater Sci Eng. 7:254–264. DOI:
10.1021/acsbiomaterials.0c01583. PMID:
33347288.
Article
63. Zhao J, Fu Y, Yamazaki Y, et al. 2020; APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer's disease patient iPSC-derived cerebral organoids. Nat Commun. 11:5540. DOI:
10.1038/s41467-020-19264-0. PMID:
33139712. PMCID:
PMC7608683.
Article
64. Pérez MJ, Ivanyuk D, Panagiotakopoulou V, et al. 2021; Loss of function of the mitochondrial peptidase PITRM1 induces proteotoxic stress and Alzheimer's disease-like pathology in human cerebral organoids. Mol Psychiatry. 26:5733–5750. DOI:
10.1038/s41380-020-0807-4.
Article
65. Kwak TH, Kang JH, Hali S, et al. 2020; Generation of homogeneous midbrain organoids with
in vivo-like cellular composition facilitates neurotoxin-based Parkinson's disease modeling. Stem Cells. 38:727–740. DOI:
10.1002/stem.3163. PMID:
32083763.
Article
67. Jo J, Yang L, Tran HD, et al. 2021; Lewy body-like inclusions in human midbrain organoids carrying glucocerebrosidase and α-synuclein mutations. Ann Neurol. 90:490–505. DOI:
10.1002/ana.26166. PMID:
34288055. PMCID:
PMC9543721.
Article
73. Trujillo CA, Gao R, Negraes PD, et al. 2019; Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell. 25:558–569.e7. DOI:
10.1016/j.stem.2019.08.002. PMID:
31474560. PMCID:
PMC6778040.
Article
75. Xiang Y, Tanaka Y, Patterson B, et al. 2017; Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell. 21:383–398.e7. DOI:
10.1016/j.stem.2017.07.007. PMID:
28757360. PMCID:
PMC5720381.
Article
76. Bagley JA, Reumann D, Bian S, Lévi-Strauss J, Knoblich JA. 2017; Fused cerebral organoids model interactions between brain regions. Nat Methods. 14:743–751. DOI:
10.1038/nmeth.4304. PMID:
28504681. PMCID:
PMC5540177.
Article
77. Lee JH, Shin H, Shaker MR, et al. 2022; Production of human spinal-cord organoids recapitulating neural-tube morphogenesis. Nat Biomed Eng. 6:435–448. DOI:
10.1038/s41551-022-00868-4. PMID:
35347276.
Article
78. Cooper F, Gentsch GE, Mitter R, et al. 2022; Rostrocaudal patterning and neural crest differentiation of human pre-neural spinal cord progenitors
in vitro. Stem Cell Reports. 17:894–910. DOI:
10.1016/j.stemcr.2022.02.018. PMID:
35334218. PMCID:
PMC9023813.
Article
80. Watanabe M, Buth JE, Vishlaghi N, et al. 2017; Self-organized cerebral organoids with human-specific features predict effective drugs to combat Zika virus infection. Cell Rep. 21:517–532. DOI:
10.1016/j.celrep.2017.09.047. PMID:
29020636. PMCID:
PMC5637483.
Article
81. Wickham J, Corna A, Schwarz N, et al. 2020; Human cerebrospinal fluid induces neuronal excitability changes in resected human neocortical and hippocampal brain slices. Front Neurosci. 14:283. DOI:
10.3389/fnins.2020.00283. PMID:
32372899. PMCID:
PMC7186381.
Article
84. Schröter M, Wang C, Terrigno M, et al. 2022; Functional imaging of brain organoids using high-density microelectrode arrays. MRS Bull. 47:530–544. DOI:
10.1557/s43577-022-00282-w.
Article
85. Shin H, Jeong S, Lee JH, Sun W, Choi N, Cho IJ. 2021; 3D high-density microelectrode array with optical stimulation and drug delivery for investigating neural circuit dynamics. Nat Commun. 12:492. DOI:
10.1038/s41467-020-20763-3. PMID:
33479237. PMCID:
PMC7820464.
Article
87. Durens M, Nestor J, Williams M, et al. 2020; High-throughput screening of human induced pluripotent stem cell-derived brain organoids. J Neurosci Methods. 335:108627. DOI:
10.1016/j.jneumeth.2020.108627. PMID:
32032714.
Article
89. Nickels SL, Modamio J, Mendes-Pinheiro B, Monzel AS, Betsou F, Schwamborn JC. 2020; Reproducible generation of human midbrain organoids for
in vitro modeling of Parkinson's disease. Stem Cell Res. 46:101870. DOI:
10.1016/j.scr.2020.101870. PMID:
32534166.
91. Brüssow H. 2021; COVID-19: vaccination problems. Environ Microbiol. 23:2878–2890. DOI:
10.1111/1462-2920.15549.