Int J Stem Cells.  2024 May;17(2):158-181. 10.15283/ijsc24056.

Guidelines for Manufacturing and Application of Organoids: Brain

Affiliations
  • 1Next & Bio Inc., Seoul, Korea
  • 2Department of Anatomy, Korea University College of Medicine, Seoul, Korea
  • 3Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
  • 4Organoid Standards Initiative
  • 5Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
  • 6Department of Biophysics, Sungkyunkwan University, Suwon, Korea
  • 7Department of Neurosurgery, St. Vincent’s Hospital, The Catholic University of Korea, Suwon, Korea
  • 8Center for Rare Disease Therapeutic Technology, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
  • 9Behavioral and Molecular Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, Korea
  • 10Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea

Abstract

This study offers a comprehensive overview of brain organoids for researchers. It combines expert opinions with technical summaries on organoid definitions, characteristics, culture methods, and quality control. This approach aims to enhance the utilization of brain organoids in research. Brain organoids, as three-dimensional human cell models mimicking the nervous system, hold immense promise for studying the human brain. They offer advantages over traditional methods, replicating anatomical structures, physiological features, and complex neuronal networks. Additionally, brain organoids can model nervous system development and interactions between cell types and the microenvironment. By providing a foundation for utilizing the most human-relevant tissue models, this work empowers researchers to overcome limitations of two-dimensional cultures and conduct advanced disease modeling research.

Keyword

Organoid; Brain organoid; Neural organoid; Guideline

Figure

  • Fig. 1 Techniques to establish region-specific brain organoids.

  • Fig. 2 Method for brain organoids specification.

  • Fig. 3 Method for dorsal, ventral forebrain and hypothalamus specification.

  • Fig. 4 Method for pituitary gland, midbrain and cerebellar organoids specification.

  • Fig. 5 Diagram of culture using a 96-well plate.

  • Fig. 6 Cellular composition of developing cerebral cortex.


Cited by  1 articles

Standards for Organoids
Sun-Ju Ahn
Int J Stem Cells. 2024;17(2):99-101.    doi: 10.15283/ijsc24043.


Reference

References

1. Vieira de Sá R, Cañizares Luna M, Pasterkamp RJ. 2021; Advances in central nervous system organoids: a focus on organoid-based models for motor neuron disease. Tissue Eng Part C Methods. 27:213–224. DOI: 10.1089/ten.tec.2020.0337.
Article
2. Pacitti D, Privolizzi R, Bax BE. 2019; Organs to cells and cells to organoids: the evolution of in vitro central nervous system modelling. Front Cell Neurosci. 13:129. DOI: 10.3389/fncel.2019.00129. PMID: 31024259. PMCID: PMC6465581.
3. Costamagna G, Comi GP, Corti S. 2021; Advancing drug discovery for neurological disorders using iPSC-derived neural organoids. Int J Mol Sci. 22:2659. DOI: 10.3390/ijms22052659. PMID: 33800815. PMCID: PMC7961877.
Article
4. Giorgi C, Lombardozzi G, Ammannito F, et al. 2024; Brain organoids: a game-changer for drug testing. Pharmaceutics. 16:443. DOI: 10.3390/pharmaceutics16040443. PMID: 38675104. PMCID: PMC11054008.
Article
5. Hong YJ, Lee SB, Choi J, Yoon SH, Do JT. 2022; A simple method for generating cerebral organoids from human pluripotent stem cells. Int J Stem Cells. 15:95–103. DOI: 10.15283/ijsc21195. PMID: 35220295. PMCID: PMC8889334.
Article
6. Kim J. 2022; Lo and behold, the lab-grown organs have arrived! Int J Stem Cells. 15:1–2. DOI: 10.15283/ijsc22026. PMID: 35220287. PMCID: PMC8889329.
Article
7. Chukwurah E, Osmundsen A, Davis SW, Lizarraga SB. 2019; All together now: modeling the interaction of neural with non-neural systems using organoid models. Front Neurosci. 13:582. DOI: 10.3389/fnins.2019.00582. PMID: 31293366. PMCID: PMC6598414.
Article
8. Makrygianni EA, Chrousos GP. 2021; From brain organoids to networking assembloids: implications for neuroendocrinology and stress medicine. Front Physiol. 12:621970. DOI: 10.3389/fphys.2021.621970. PMID: 34177605. PMCID: PMC8222922.
Article
9. Bhattacharya A, Choi WWY, Muffat J, Li Y. 2022; Modeling developmental brain diseases using human pluripotent stem cells-derived brain organoids - progress and perspective. J Mol Biol. 434:167386. DOI: 10.1016/j.jmb.2021.167386. PMID: 34883115.
Article
10. Wang H. 2018; Modeling neurological diseases with human brain organoids. Front Synaptic Neurosci. 10:15. DOI: 10.3389/fnsyn.2018.00015. PMID: 29937727. PMCID: PMC6002496.
Article
11. Wray S. 2021; Modelling neurodegenerative disease using brain organoids. Semin Cell Dev Biol. 111:60–66. DOI: 10.1016/j.semcdb.2020.05.012. PMID: 32513498.
Article
12. Salick MR, Lubeck E, Riesselman A, Kaykas A. 2021; The future of cerebral organoids in drug discovery. Semin Cell Dev Biol. 111:67–73. DOI: 10.1016/j.semcdb.2020.05.024. PMID: 32654970.
Article
13. Sun N, Meng X, Liu Y, Song D, Jiang C, Cai J. 2021; Applications of brain organoids in neurodevelopment and neurological diseases. J Biomed Sci. 28:30. DOI: 10.1186/s12929-021-00728-4. PMID: 33888112. PMCID: PMC8063318.
Article
14. Tang XY, Wu S, Wang D, et al. 2022; Human organoids in basic research and clinical applications. Signal Transduct Target Ther. 7:168. DOI: 10.1038/s41392-022-01024-9. PMID: 35610212. PMCID: PMC9127490.
Article
15. Grenier K, Kao J, Diamandis P. 2020; Three-dimensional modeling of human neurodegeneration: brain organoids coming of age. Mol Psychiatry. 25:254–274. DOI: 10.1038/s41380-019-0500-7. PMID: 31444473.
Article
16. Susaimanickam PJ, Kiral FR, Park IH. 2022; Region specific brain organoids to study neurodevelopmental disorders. Int J Stem Cells. 15:26–40. DOI: 10.15283/ijsc22006. PMID: 35220290. PMCID: PMC8889336.
Article
17. Yadav A, Seth B, Chaturvedi RK. 2021; Brain organoids: tiny mirrors of human neurodevelopment and neurological disorders. Neuroscientist. 27:388–426. DOI: 10.1177/1073858420943192. PMID: 32723210.
Article
18. Muzio L, Consalez GG. 2013; Modeling human brain development with cerebral organoids. Stem Cell Res Ther. 4:154. DOI: 10.1186/scrt384. PMID: 24367992. PMCID: PMC4055082.
Article
19. Qian X, Song H, Ming GL. 2019; Brain organoids: advances, applications and challenges. Development. 146:dev166074. DOI: 10.1242/dev.166074. PMID: 30992274. PMCID: PMC6503989.
Article
20. Zhao HH, Haddad G. 2024; Brain organoid protocols and limitations. Front Cell Neurosci. 18:1351734. DOI: 10.3389/fncel.2024.1351734. PMID: 38572070. PMCID: PMC10987830.
Article
21. Kim SH, Chang MY. 2023; Application of human brain organoids-opportunities and challenges in modeling human brain development and neurodevelopmental diseases. Int J Mol Sci. 24:12528. DOI: 10.3390/ijms241512528. PMID: 37569905. PMCID: PMC10420018.
Article
22. Zhou Z, Cong L, Cong X. 2021; Patient-derived organoids in precision medicine: drug screening, organoid-on-a-chip and living organoid biobank. Front Oncol. 11:762184. DOI: 10.3389/fonc.2021.762184. PMID: 35036354. PMCID: PMC8755639.
Article
23. Chen CC, Li HW, Wang YL, et al. 2022; Patient-derived tumor organoids as a platform of precision treatment for malignant brain tumors. Sci Rep. 12:16399. DOI: 10.1038/s41598-022-20487-y. PMID: 36180511. PMCID: PMC9525286.
Article
24. Korhonen P, Malm T, White AR. 2018; 3D human brain cell models: new frontiers in disease understanding and drug discovery for neurodegenerative diseases. Neurochem Int. 120:191–199. DOI: 10.1016/j.neuint.2018.08.012. PMID: 30176269.
Article
25. Liu S, He Y, Yin J, Zhu Q, Liao C, Jiang G. 2024; Neurotoxicities induced by micro/nanoplastics: a review focusing on the risks of neurological diseases. J Hazard Mater. 469:134054. DOI: 10.1016/j.jhazmat.2024.134054. PMID: 38503214.
Article
26. Casey S, Carter M, Looney AM, et al. 2022; Maternal mid-gestation cytokine dysregulation in mothers of children with autism spectrum disorder. J Autism Dev Disord. 52:3919–3932. DOI: 10.1007/s10803-021-05271-7. PMID: 34505185. PMCID: PMC9349096.
Article
27. Jarmund AH, Giskeødegård GF, Ryssdal M, et al. 2021; Cytokine patterns in maternal serum from first trimester to term and beyond. Front Immunol. 12:752660. DOI: 10.3389/fimmu.2021.752660. PMID: 34721426. PMCID: PMC8552528.
Article
28. Rash BG, Grove EA. 2006; Area and layer patterning in the developing cerebral cortex. Curr Opin Neurobiol. 16:25–34. DOI: 10.1016/j.conb.2006.01.004. PMID: 16426837.
Article
29. Berman NE, Johnson JK, Klein RM. 1997; Early generation of glia in the intermediate zone of the developing cerebral cortex. Brain Res Dev Brain Res. 101:149–164. DOI: 10.1016/S0165-3806(97)00060-6. PMID: 9263589.
Article
30. De Juan Romero C, Borrell V. 2015; Coevolution of radial glial cells and the cerebral cortex. Glia. 63:1303–1319. DOI: 10.1002/glia.22827. PMID: 25808466. PMCID: PMC5008138.
Article
31. Lancaster MA, Renner M, Martin CA, et al. 2013; Cerebral organoids model human brain development and microcephaly. Nature. 501:373–379. DOI: 10.1038/nature12517. PMID: 23995685. PMCID: PMC3817409.
Article
32. Paşca AM, Sloan SA, Clarke LE, et al. 2015; Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods. 12:671–678. DOI: 10.1038/nmeth.3415.
Article
33. Eiraku M, Watanabe K, Matsuo-Takasaki M, et al. 2008; Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell. 3:519–532. DOI: 10.1016/j.stem.2008.09.002. PMID: 18983967.
Article
34. Huang WK, Wong SZH, Pather SR, et al. 2021; Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells. Cell Stem Cell. 28:1657–1670.e10. DOI: 10.1016/j.stem.2021.04.006. PMID: 33961804. PMCID: PMC8419002.
Article
35. Matsumoto R, Suga H, Aoi T, et al. 2020; Congenital pituitary hypoplasia model demonstrates hypothalamic OTX2 regulation of pituitary progenitor cells. J Clin Invest. 130:641–654. DOI: 10.1172/JCI127378. PMID: 31845906. PMCID: PMC6994153.
Article
36. Nakano T, Ando S, Takata N, et al. 2012; Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 10:771–785. DOI: 10.1016/j.stem.2012.05.009. PMID: 22704518.
Article
37. Pomeshchik Y, Klementieva O, Gil J, et al. 2021; Human iPSC-derived hippocampal spheroids: an innovative tool for stratifying Alzheimer disease patient-specific cellular phenotypes and developing therapies. Stem Cell Reports. 16:2838. DOI: 10.1016/j.stemcr.2021.10.003. PMID: 34758331. PMCID: PMC8581187.
Article
38. Ballabio C, Anderle M, Gianesello M, et al. 2020; Modeling medulloblastoma in vivo and with human cerebellar organoids. Nat Commun. 11:583. DOI: 10.1038/s41467-019-13989-3. PMID: 31996670. PMCID: PMC6989674.
39. Jo J, Xiao Y, Sun AX, et al. 2016; Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell. 19:248–257. DOI: 10.1016/j.stem.2016.07.005. PMID: 27476966. PMCID: PMC5510242.
Article
40. Smits LM, Reinhardt L, Reinhardt P, et al. 2019; Modeling Parkinson's disease in midbrain-like organoids. NPJ Parkinsons Dis. 5:5. DOI: 10.1038/s41531-019-0078-4. PMID: 30963107. PMCID: PMC6450999.
Article
41. Kim H, Xu R, Padmashri R, et al. 2019; Pluripotent stem cell-derived cerebral organoids reveal human oligodendrogenesis with dorsal and ventral origins. Stem Cell Reports. 12:890–905. DOI: 10.1016/j.stemcr.2019.04.011. PMID: 31091434. PMCID: PMC6524754.
Article
42. Mills RJ, Parker BL, Quaife-Ryan GA, et al. 2019; Drug screening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway. Cell Stem Cell. 24:895–907.e6. DOI: 10.1016/j.stem.2019.03.009. PMID: 30930147.
Article
43. Takebe T, Sekine K, Enomura M, et al. 2013; Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 499:481–484. DOI: 10.1038/nature12271. PMID: 23823721.
Article
44. Takebe T, Enomura M, Yoshizawa E, et al. 2015; Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation. Cell Stem Cell. 16:556–565. DOI: 10.1016/j.stem.2015.03.004. PMID: 25891906.
Article
45. Guan Y, Xu D, Garfin PM, et al. 2017; Human hepatic organoids for the analysis of human genetic diseases. JCI Insight. 2:e94954. DOI: 10.1172/jci.insight.94954. PMID: 28878125. PMCID: PMC5621886.
Article
46. Takasato M, Er PX, Becroft M, et al. 2014; Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol. 16:118–126. DOI: 10.1038/ncb2894. PMID: 24335651.
Article
47. Li R, Sun L, Fang A, Li P, Wu Q, Wang X. 2017; Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease. Protein Cell. 8:823–833. DOI: 10.1007/s13238-017-0479-2. PMID: 29058117. PMCID: PMC5676597.
Article
48. Omer Javed A, Li Y, et al. 2018; Microcephaly modeling of kinetochore mutation reveals a brain-specific phenotype. Cell Rep. 25:368–382.e5. DOI: 10.1016/j.celrep.2018.09.032. PMID: 30304678. PMCID: PMC6392048.
Article
49. Wang L, Li Z, Sievert D, et al. 2020; Loss of NARS1 impairs progenitor proliferation in cortical brain organoids and leads to microcephaly. Nat Commun. 11:4038. DOI: 10.1038/s41467-020-17454-4. PMID: 32788587. PMCID: PMC7424529.
Article
50. Cugola FR, Fernandes IR, Russo FB, et al. 2016; The Brazilian Zika virus strain causes birth defects in experimental models. Nature. 534:267–271. DOI: 10.1038/nature18296. PMID: 27279226. PMCID: PMC4902174.
Article
51. Qian X, Nguyen HN, Song MM, et al. 2016; Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell. 165:1238–1254. DOI: 10.1016/j.cell.2016.04.032. PMID: 27118425. PMCID: PMC4900885.
Article
52. Mariani J, Coppola G, Zhang P, et al. 2015; FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell. 162:375–390. DOI: 10.1016/j.cell.2015.06.034. PMID: 26186191. PMCID: PMC4519016.
Article
53. Wang P, Mokhtari R, Pedrosa E, et al. 2017; CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Mol Autism. 8:11. DOI: 10.1186/s13229-017-0124-1. PMID: 28321286. PMCID: PMC5357816.
Article
54. Hali S, Kim J, Kwak TH, Lee H, Shin CY, Han DW. 2020; Modelling monogenic autism spectrum disorder using mouse cortical organoids. Biochem Biophys Res Commun. 521:164–171. DOI: 10.1016/j.bbrc.2019.10.097. PMID: 31653345.
Article
55. Mellios N, Feldman DA, Sheridan SD, et al. 2018; MeCP2-regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling. Mol Psychiatry. 23:1051–1065. DOI: 10.1038/mp.2017.86. PMID: 28439102. PMCID: PMC5815944.
Article
56. Xiang Y, Tanaka Y, Patterson B, et al. 2020; Dysregulation of BRD4 function underlies the functional abnormalities of MeCP2 mutant neurons. Mol Cell. 79:84–98.e9. DOI: 10.1016/j.molcel.2020.05.016. PMID: 32526163. PMCID: PMC7375197.
Article
57. Gomes AR, Fernandes TG, Vaz SH, et al. 2020; Modeling Rett syndrome with human patient-specific forebrain organoids. Front Cell Dev Biol. 8:610427. DOI: 10.3389/fcell.2020.610427. PMID: 33363173. PMCID: PMC7758289.
Article
58. Xu R, Brawner AT, Li S, et al. 2019; OLIG2 drives abnormal neurodevelopmental phenotypes in human iPSC-based organoid and chimeric mouse models of Down syndrome. Cell Stem Cell. 24:908–926.e8. DOI: 10.1016/j.stem.2019.04.014. PMID: 31130512. PMCID: PMC6944064.
Article
59. Tang XY, Xu L, Wang J, et al. 2021; DSCAM/PAK1 pathway suppression reverses neurogenesis deficits in iPSC-derived cerebral organoids from patients with Down syndrome. J Clin Invest. 131:e135763. DOI: 10.1172/JCI135763. PMID: 33945512. PMCID: PMC8203468.
Article
60. Jin M, Pomp O, Shinoda T, et al. 2017; Katanin p80, NuMA and cytoplasmic dynein cooperate to control microtubule dynamics. Sci Rep. 7:39902. DOI: 10.1038/srep39902. PMID: 28079116. PMCID: PMC5228124.
Article
61. Srikanth P, Lagomarsino VN, Muratore CR, et al. 2018; Shared effects of DISC1 disruption and elevated WNT signaling in human cerebral organoids. Transl Psychiatry. 8:77. DOI: 10.1038/s41398-018-0122-x. PMID: 29643329. PMCID: PMC5895714.
Article
62. Yin J, VanDongen AM. 2021; Enhanced neuronal activity and asynchronous calcium transients revealed in a 3D organoid model of Alzheimer's disease. ACS Biomater Sci Eng. 7:254–264. DOI: 10.1021/acsbiomaterials.0c01583. PMID: 33347288.
Article
63. Zhao J, Fu Y, Yamazaki Y, et al. 2020; APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer's disease patient iPSC-derived cerebral organoids. Nat Commun. 11:5540. DOI: 10.1038/s41467-020-19264-0. PMID: 33139712. PMCID: PMC7608683.
Article
64. Pérez MJ, Ivanyuk D, Panagiotakopoulou V, et al. 2021; Loss of function of the mitochondrial peptidase PITRM1 induces proteotoxic stress and Alzheimer's disease-like pathology in human cerebral organoids. Mol Psychiatry. 26:5733–5750. DOI: 10.1038/s41380-020-0807-4.
Article
65. Kwak TH, Kang JH, Hali S, et al. 2020; Generation of homogeneous midbrain organoids with in vivo-like cellular composition facilitates neurotoxin-based Parkinson's disease modeling. Stem Cells. 38:727–740. DOI: 10.1002/stem.3163. PMID: 32083763.
Article
66. Kim H, Park HJ, Choi H, et al. 2019; Modeling G2019S-LRRK2 sporadic Parkinson's disease in 3D midbrain organoids. Stem Cell Reports. 12:518–531. DOI: 10.1016/j.stemcr.2019.01.020. PMID: 30799274. PMCID: PMC6410341.
Article
67. Jo J, Yang L, Tran HD, et al. 2021; Lewy body-like inclusions in human midbrain organoids carrying glucocerebrosidase and α-synuclein mutations. Ann Neurol. 90:490–505. DOI: 10.1002/ana.26166. PMID: 34288055. PMCID: PMC9543721.
Article
68. Quadrato G, Nguyen T, Macosko EZ, et al. 2017; Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 545:48–53. DOI: 10.1038/nature22047. PMID: 28445462. PMCID: PMC5659341.
Article
69. Renner M, Lancaster MA, Bian S, et al. 2017; Self-organized developmental patterning and differentiation in cerebral organoids. EMBO J. 36:1316–1329. DOI: 10.15252/embj.201694700. PMID: 28283582. PMCID: PMC5430225.
Article
70. Sloan SA, Darmanis S, Huber N, et al. 2017; Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron. 95:779–790.e6. DOI: 10.1016/j.neuron.2017.07.035. PMID: 28817799. PMCID: PMC5890820.
Article
71. Marton RM, Miura Y, Sloan SA, et al. 2019; Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures. Nat Neurosci. 22:484–491. DOI: 10.1038/s41593-018-0316-9. PMID: 30692691. PMCID: PMC6788758.
Article
72. Madhavan M, Nevin ZS, Shick HE, et al. 2018; Induction of myelinating oligodendrocytes in human cortical spheroids. Nat Methods. 15:700–706. DOI: 10.1038/s41592-018-0081-4. PMID: 30046099. PMCID: PMC6508550.
Article
73. Trujillo CA, Gao R, Negraes PD, et al. 2019; Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell. 25:558–569.e7. DOI: 10.1016/j.stem.2019.08.002. PMID: 31474560. PMCID: PMC6778040.
Article
74. Birey F, Andersen J, Makinson CD, et al. 2017; Assembly of functionally integrated human forebrain spheroids. Nature. 545:54–59. DOI: 10.1038/nature22330. PMID: 28445465. PMCID: PMC5805137.
Article
75. Xiang Y, Tanaka Y, Patterson B, et al. 2017; Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell. 21:383–398.e7. DOI: 10.1016/j.stem.2017.07.007. PMID: 28757360. PMCID: PMC5720381.
Article
76. Bagley JA, Reumann D, Bian S, Lévi-Strauss J, Knoblich JA. 2017; Fused cerebral organoids model interactions between brain regions. Nat Methods. 14:743–751. DOI: 10.1038/nmeth.4304. PMID: 28504681. PMCID: PMC5540177.
Article
77. Lee JH, Shin H, Shaker MR, et al. 2022; Production of human spinal-cord organoids recapitulating neural-tube morphogenesis. Nat Biomed Eng. 6:435–448. DOI: 10.1038/s41551-022-00868-4. PMID: 35347276.
Article
78. Cooper F, Gentsch GE, Mitter R, et al. 2022; Rostrocaudal patterning and neural crest differentiation of human pre-neural spinal cord progenitors in vitro. Stem Cell Reports. 17:894–910. DOI: 10.1016/j.stemcr.2022.02.018. PMID: 35334218. PMCID: PMC9023813.
Article
79. Lancaster MA, Knoblich JA. 2014; Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc. 9:2329–2340. DOI: 10.1038/nprot.2014.158. PMID: 25188634. PMCID: PMC4160653.
Article
80. Watanabe M, Buth JE, Vishlaghi N, et al. 2017; Self-organized cerebral organoids with human-specific features predict effective drugs to combat Zika virus infection. Cell Rep. 21:517–532. DOI: 10.1016/j.celrep.2017.09.047. PMID: 29020636. PMCID: PMC5637483.
Article
81. Wickham J, Corna A, Schwarz N, et al. 2020; Human cerebrospinal fluid induces neuronal excitability changes in resected human neocortical and hippocampal brain slices. Front Neurosci. 14:283. DOI: 10.3389/fnins.2020.00283. PMID: 32372899. PMCID: PMC7186381.
Article
82. Hill CL, Stephens GJ. 2021; An introduction to patch clamp recording. Methods Mol Biol. 2188:1–19. DOI: 10.1007/978-1-0716-0818-0_1. PMID: 33119844.
Article
83. Passaro AP, Stice SL. 2021; Electrophysiological analysis of brain organoids: current approaches and advancements. Front Neurosci. 14:622137. DOI: 10.3389/fnins.2020.622137. PMID: 33510616. PMCID: PMC7835643.
Article
84. Schröter M, Wang C, Terrigno M, et al. 2022; Functional imaging of brain organoids using high-density microelectrode arrays. MRS Bull. 47:530–544. DOI: 10.1557/s43577-022-00282-w.
Article
85. Shin H, Jeong S, Lee JH, Sun W, Choi N, Cho IJ. 2021; 3D high-density microelectrode array with optical stimulation and drug delivery for investigating neural circuit dynamics. Nat Commun. 12:492. DOI: 10.1038/s41467-020-20763-3. PMID: 33479237. PMCID: PMC7820464.
Article
86. Telias M, Ben-Yosef D. 2015; Neural stem cell replacement: a possible therapy for neurodevelopmental disorders? Neural Regen Res. 10:180–182. DOI: 10.4103/1673-5374.152361. PMID: 25883606. PMCID: PMC4392655.
Article
87. Durens M, Nestor J, Williams M, et al. 2020; High-throughput screening of human induced pluripotent stem cell-derived brain organoids. J Neurosci Methods. 335:108627. DOI: 10.1016/j.jneumeth.2020.108627. PMID: 32032714.
Article
88. Huang Q, Tang B, Romero JC, et al. 2022; Shell microelectrode arrays (MEAs) for brain organoids. Sci Adv. 8:eabq5031. DOI: 10.1126/sciadv.abq5031. PMID: 35977026. PMCID: PMC9385157.
Article
89. Nickels SL, Modamio J, Mendes-Pinheiro B, Monzel AS, Betsou F, Schwamborn JC. 2020; Reproducible generation of human midbrain organoids for in vitro modeling of Parkinson's disease. Stem Cell Res. 46:101870. DOI: 10.1016/j.scr.2020.101870. PMID: 32534166.
90. Anand P, Stahel VP. 2021; Review the safety of Covid-19 mRNA vaccines: a review. Patient Saf Surg. 15:20. DOI: 10.1186/s13037-021-00291-9. PMID: 33933145. PMCID: PMC8087878.
91. Brüssow H. 2021; COVID-19: vaccination problems. Environ Microbiol. 23:2878–2890. DOI: 10.1111/1462-2920.15549.
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr