Int J Stem Cells.  2024 May;17(2):147-157. 10.15283/ijsc24041.

Guidelines for Manufacturing and Application of Organoids: Lung

Affiliations
  • 1Organoid Standards Initiative
  • 2Department of Life Sciences, Korea University, Seoul, Korea
  • 3Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
  • 4Department of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
  • 5School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
  • 6Collage of Pharmacy, Ajou University, Suwon, Korea
  • 7Department of Biohealth Regulatory Science, Graduate School of Ajou University, Suwon, Korea
  • 8Department of Bio and Environmental Technology, Seoul Women’s University, Seoul, Korea
  • 9School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Korea
  • 10Department of Pulmonary and Critical Care Medicine, Chungnam National University Hospital, Daejeon, Korea
  • 11Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Korea
  • 12Department of Medical Chemistry and Pharmacology, Korea University of Science and Technology (UST), Daejeon, Korea
  • 13Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
  • 14Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
  • 15Department of Biophysics, Sungkyunkwan University, Suwon, Korea
  • 16Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea

Abstract

The objective of standard guideline for utilization of human lung organoids is to provide the basic guidelines required for the manufacture, culture, and quality control of the lung organoids for use in non-clinical efficacy and inhalation toxicity assessments of the respiratory system. As a first step towards the utilization of human lung organoids, the current guideline provides basic, minimal standards that can promote development of alternative testing methods, and can be referenced not only for research, clinical, or commercial uses, but also by experts and researchers at regulatory institutions when assessing safety and efficacy.

Keyword

Organoid Standards Initiative; Human lung; Lung organoid

Figure

  • Fig. 1 A schematic diagram outlining the workflow for producing human lung organoids from adult lungs and pluripotent stem cells. In this process, alveolar type 2 (AT2) cells and basal cells from adult human lungs serve as sources of stem/progenitor cells capable of forming alveolar and airway lineage organoids, demonstrating differentiation potential towards their respective downstream cell types. Pluripotent stem cells also can be utilized as a source of cells, giving rise to lung lineage cell type via definitive endoderm, anterior foregut endoderm, and essentially NKX2.1+ lung progenitor cells. Under suitable culture condition, the NKX2.1+ lung progenitor cells can differentiate to alveolar, or airway lineage committed organoids. BioRender.com was used for creating this diagram. NGFR: nerve growth factor receptor, ESC: embryonic stem cell, iPSC: induced pluripotent stem cell.


Cited by  1 articles

Standards for Organoids
Sun-Ju Ahn
Int J Stem Cells. 2024;17(2):99-101.    doi: 10.15283/ijsc24043.


Reference

References

1. He P, Lim K, Sun D, et al. 2022; Dec. A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates. Cell. 185:4841–4860. DOI: 10.1016/j.cell.2022.11.005. PMID: 36493756.
Article
2. Nikolić MZ, Sun D, Rawlins EL. 2018; Human lung development: recent progress and new challenges. Development. 145:dev163485. DOI: 10.1242/dev.163485. PMID: 30111617. PMCID: PMC6124546.
Article
3. Pan H, Deutsch GH, Wert SE. Ontology Subcommittee. NHLBI Molecular Atlas of Lung Development Program Consortium. 2019; Comprehensive anatomic ontologies for lung development: a comparison of alveolar formation and maturation within mouse and human lung. J Biomed Semantics. 10:18. DOI: 10.1186/s13326-019-0209-1. PMID: 31651362. PMCID: PMC6814058.
Article
4. Travaglini KJ, Nabhan AN, Penland L, et al. 2020; A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature. 587:619–625. DOI: 10.1038/s41586-020-2922-4. PMID: 33208946. PMCID: PMC7704697.
Article
5. Rock JR, Randell SH, Hogan BLM. 2010; Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech. 3:545–556. DOI: 10.1242/dmm.006031. PMID: 20699479. PMCID: PMC2931533.
Article
6. Madissoon E, Oliver AJ, Kleshchevnikov V, et al. 2023; A spatially resolved atlas of the human lung characterizes a gland-associated immune niche. Nat Genet. 55:66–77. DOI: 10.1038/s41588-022-01243-4. PMID: 36543915. PMCID: PMC9839452.
Article
7. Kadur Lakshminarasimha Murthy P, Sontake V, Tata A, et al. 2022; Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature. 604:111–119. DOI: 10.1038/s41586-022-04541-3. PMID: 35355018. PMCID: PMC9169066.
Article
8. Basil MC, Cardenas-Diaz FL, Kathiriya JJ, et al. 2022; Human distal airways contain a multipotent secretory cell that can regenerate alveoli. Nature. 604:120–126. DOI: 10.1038/s41586-022-04552-0. PMID: 35355013. PMCID: PMC9297319.
Article
9. Heo HR, Hong SH. 2021; Generation of macrophage containing alveolar organoids derived from human pluripotent stem cells for pulmonary fibrosis modeling and drug efficacy testing. Cell Biosci. 11:216. DOI: 10.1186/s13578-021-00721-2. PMID: 34922627. PMCID: PMC8684607.
Article
10. Kim JH, Kim J, Kim WJ, Choi YH, Yang SR, Hong SH. 2020; Diesel particulate matter 2.5 induces epithelial-to-mesenchymal transition and upregulation of SARS-CoV-2 receptor during human pluripotent stem cell-derived alveolar organoid development. Int J Environ Res Public Health. 17:8410. DOI: 10.3390/ijerph17228410. PMID: 33202948. PMCID: PMC7696313.
Article
11. Rasaei R, Kim E, Kim JY, et al. 2020; Regulation of JAM2 expression in the lungs of streptozotocin-induced diabetic mice and human pluripotent stem cell-derived alveolar organoids. Biomedicines. 8:346. DOI: 10.3390/biomedicines8090346. PMID: 32932992. PMCID: PMC7555027.
Article
12. Kim JH, An GH, Kim JY, et al. 2021; Human pluripotent stem-cell-derived alveolar organoids for modeling pulmonary fibrosis and drug testing. Cell Death Discov. 7:48. DOI: 10.1038/s41420-021-00439-7. PMID: 33723255. PMCID: PMC7961057.
13. Kim J. 2022; Lo and behold, the lab-grown organs have arrived! Int J Stem Cells. 15:1–2. DOI: 10.15283/ijsc22026. PMID: 35220287. PMCID: PMC8889329.
Article
14. Abo KM, Sainz de Aja J, Lindstrom-Vautrin J, et al. 2022; Air-liquid interface culture promotes maturation and allows environmental exposure of pluripotent stem cell-derived alveolar epithelium. JCI Insight. 7:e155589. DOI: 10.1172/jci.insight.155589. PMID: 35315362. PMCID: PMC8986076.
Article
15. Huang J, Hume AJ, Abo KM, et al. 2020; SARS-CoV-2 infection of pluripotent stem cell-derived human lung alveolar type 2 cells elicits a rapid epithelial-intrinsic inflammatory response. Cell Stem Cell. 27:962–973.e7. DOI: 10.1016/j.stem.2020.09.013. PMID: 32979316. PMCID: PMC7500949.
Article
16. Zacharias WJ, Frank DB, Zepp JA, et al. 2018; Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature. 555:251–255. DOI: 10.1038/nature25786. PMID: 29489752. PMCID: PMC6020060.
Article
17. Sikkema L, Ramírez-Suástegui C, Strobl DC, et al. 2023; An integrated cell atlas of the lung in health and disease. Nat Med. 29:1563–1577. DOI: 10.1038/s41591-023-02327-2. PMID: 37291214. PMCID: PMC10287567.
18. Barkauskas CE, Cronce MJ, Rackley CR, et al. 2013; Type 2 alveolar cells are stem cells in adult lung. J Clin Invest. 123:3025–3036. DOI: 10.1172/JCI68782. PMID: 23921127. PMCID: PMC3696553.
Article
19. Rock JR, Onaitis MW, Rawlins EL, et al. 2009; Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A. 106:12771–12775. DOI: 10.1073/pnas.0906850106. PMID: 19625615. PMCID: PMC2714281.
Article
20. Yang Y, Riccio P, Schotsaert M, et al. 2018; Spatial-temporal lineage restrictions of embryonic p63 progenitors establish distinct stem cell pools in adult airways. Dev Cell. 44:752–761.e4. DOI: 10.1016/j.devcel.2018.03.001. PMID: 29587145. PMCID: PMC5875454.
21. Nabhan AN, Brownfield DG, Harbury PB, Krasnow MA, Desai TJ. 2018; Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science. 359:1118–1123. DOI: 10.1126/science.aam6603. PMID: 29420258. PMCID: PMC5997265.
Article
22. Choi J, Park JE, Tsagkogeorga G, et al. 2020; Inflammatory signals induce AT2 cell-derived damage-associated transient progenitors that mediate alveolar regeneration. Cell Stem Cell. 27:366–382.e7. DOI: 10.1016/j.stem.2020.06.020. PMID: 32750316. PMCID: PMC7487779.
Article
23. Kobayashi Y, Tata A, Konkimalla A, et al. 2020; Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat Cell Biol. 22:934–946. DOI: 10.1038/s41556-020-0542-8. PMID: 32661339. PMCID: PMC7461628.
Article
24. Strunz M, Simon LM, Ansari M, et al. 2020; Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nat Commun. 11:3559. DOI: 10.1038/s41467-020-17358-3. PMID: 32678092. PMCID: PMC7366678.
Article
25. Wu H, Tang N. 2021; Stem cells in pulmonary alveolar regeneration. Development. 148:dev193458. DOI: 10.1242/dev.193458. PMID: 33461972.
Article
26. Burgess CL, Huang J, Bawa PS, et al. 2024; Generation of human alveolar epithelial type I cells from pluripotent stem cells. Cell Stem Cell. 31:657–675.e8. DOI: 10.1016/j.stem.2024.03.017. PMID: 38642558.
Article
27. Shiraishi K, Shah PP, Morley MP, et al. 2023; Biophysical forces mediated by respiration maintain lung alveolar epithelial cell fate. Cell. 186:1478–1492.e15. DOI: 10.1016/j.cell.2023.02.010. PMID: 36870331. PMCID: PMC10065960.
Article
28. Hogan BLM, Barkauskas CE, Chapman HA, et al. 2014; Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell. 15:123–138. DOI: 10.1016/j.stem.2014.07.012. PMID: 25105578. PMCID: PMC4212493.
Article
29. Morrisey EE, Hogan BLM. 2010; Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell. 18:8–23. DOI: 10.1016/j.devcel.2009.12.010. PMID: 20152174. PMCID: PMC3736813.
Article
30. Gonzalez RF, Allen L, Gonzales L, Ballard PL, Dobbs LG. 2010; HTII-280, a biomarker specific to the apical plasma membrane of human lung alveolar type II cells. J Histochem Cytochem. 58:891–901. DOI: 10.1369/jhc.2010.956433. PMID: 20566753. PMCID: PMC2942742.
Article
31. Desai TJ, Brownfield DG, Krasnow MA. 2014; Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature. 507:190–194. DOI: 10.1038/nature12930. PMID: 24499815. PMCID: PMC4013278.
Article
32. Lim K, Donovan APA, Tang W, et al. 2023; Organoid modeling of human fetal lung alveolar development reveals mechanisms of cell fate patterning and neonatal respiratory disease. Cell Stem Cell. 30:20–37.e9. DOI: 10.1016/j.stem.2022.11.013. PMID: 36493780.
Article
33. Lim K, Rutherford EN, Sun D, et al. 2023; A novel human fetal lung-derived alveolar organoid model reveals mechanisms of surfactant protein C maturation relevant to interstitial lung disease. bioRxiv [Preprint]. 2023.08.30.555522. DOI: 10.1101/2023.08.30.555522.
Article
34. Olmeda B, Martínez-Calle M, Pérez-Gil J. 2017; Pulmonary surfactant metabolism in the alveolar airspace: biogenesis, extracellular conversions, recycling. Ann Anat. 209:78–92. DOI: 10.1016/j.aanat.2016.09.008. PMID: 27773772.
Article
35. Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR. 2004; In vivo differentiation potential of tracheal basal cells: evidence for multipotent and unipotent subpopulations. Am J Physiol Lung Cell Mol Physiol. 286:L643–L649. DOI: 10.1152/ajplung.00155.2003. PMID: 12871857.
36. Salahudeen AA, Choi SS, Rustagi A, et al. 2020; Progenitor identification and SARS-CoV-2 infection in human distal lung organoids. Nature. 588:670–675. DOI: 10.1038/s41586-020-3014-1. PMID: 33238290. PMCID: PMC8003326.
Article
37. Hawkins F, Kramer P, Jacob A, et al. 2017; Prospective isolation of NKX2-1-expressing human lung progenitors derived from pluripotent stem cells. J Clin Invest. 127:2277–2294. DOI: 10.1172/JCI89950. PMID: 28463226. PMCID: PMC5451263.
Article
38. Hein RFC, Conchola AS, Fine AS, et al. 2022; Stable iPSC-derived NKX2-1+ lung bud tip progenitor organoids give rise to airway and alveolar cell types. Development. 149:dev200693. DOI: 10.1242/dev.200693. PMID: 36039869. PMCID: PMC9534489.
Article
39. McCauley KB, Hawkins F, Serra M, Thomas DC, Jacob A, Kotton DN. 2017; Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of Wnt signaling. Cell Stem Cell. 20:844–857.e6. DOI: 10.1016/j.stem.2017.03.001. PMID: 28366587. PMCID: PMC5457392.
Article
40. Boggaram V. 2009; Thyroid transcription factor-1 (TTF-1/Nkx2.1/TITF1) gene regulation in the lung. Clin Sci. 116:27–35. DOI: 10.1042/CS20080068. PMID: 19037882.
Article
41. Jacob A, Morley M, Hawkins F, et al. 2017; Differentiation of human pluripotent stem cells into functional lung alveolar epithelial cells. Cell Stem Cell. 21:472–488.e10. DOI: 10.1016/j.stem.2017.08.014. PMID: 28965766. PMCID: PMC5755620.
Article
42. Gotoh S, Ito I, Nagasaki T, et al. 2014; Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Reports. 3:394–403. DOI: 10.1016/j.stemcr.2014.07.005. PMID: 25241738. PMCID: PMC4266003.
Article
43. Hawkins FJ, Suzuki S, Beermann ML, et al. 2021; Derivation of airway basal stem cells from human pluripotent stem cells. Cell Stem Cell. 28:79–95.e8. DOI: 10.1016/j.stem.2020.09.017. PMID: 33098807. PMCID: PMC7796997.
Article
44. Nikolić MZ, Caritg O, Jeng Q, et al. 2017; Human embryonic lung epithelial tips are multipotent progenitors that can be expanded in vitro as long-term self-renewing organoids. Elife. 6:e26575. DOI: 10.7554/eLife.26575. PMID: 28665271. PMCID: PMC5555721.
Article
45. Ministry of Health and Welfare. 2022. Dec. 30. Bioethics and Safety Act [Internet]. Korea Ministry of Government Legislation;Sejong: Available from: https://www.law.go.kr/LSW//lsInfoP.do?lsiSeq=247359&ancYd=20221230&ancNo=00931&efYd=20221230&nwJoYnInfo=N&efGubun=Y&chrClsCd=010202&ancYnChk=0#0000. cited 2023 Nov 22.
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr