1. He P, Lim K, Sun D, et al. 2022; Dec. A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates. Cell. 185:4841–4860. DOI:
10.1016/j.cell.2022.11.005. PMID:
36493756.
Article
3. Pan H, Deutsch GH, Wert SE. Ontology Subcommittee. NHLBI Molecular Atlas of Lung Development Program Consortium. 2019; Comprehensive anatomic ontologies for lung development: a comparison of alveolar formation and maturation within mouse and human lung. J Biomed Semantics. 10:18. DOI:
10.1186/s13326-019-0209-1. PMID:
31651362. PMCID:
PMC6814058.
Article
5. Rock JR, Randell SH, Hogan BLM. 2010; Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech. 3:545–556. DOI:
10.1242/dmm.006031. PMID:
20699479. PMCID:
PMC2931533.
Article
9. Heo HR, Hong SH. 2021; Generation of macrophage containing alveolar organoids derived from human pluripotent stem cells for pulmonary fibrosis modeling and drug efficacy testing. Cell Biosci. 11:216. DOI:
10.1186/s13578-021-00721-2. PMID:
34922627. PMCID:
PMC8684607.
Article
10. Kim JH, Kim J, Kim WJ, Choi YH, Yang SR, Hong SH. 2020; Diesel particulate matter 2.5 induces epithelial-to-mesenchymal transition and upregulation of SARS-CoV-2 receptor during human pluripotent stem cell-derived alveolar organoid development. Int J Environ Res Public Health. 17:8410. DOI:
10.3390/ijerph17228410. PMID:
33202948. PMCID:
PMC7696313.
Article
11. Rasaei R, Kim E, Kim JY, et al. 2020; Regulation of JAM2 expression in the lungs of streptozotocin-induced diabetic mice and human pluripotent stem cell-derived alveolar organoids. Biomedicines. 8:346. DOI:
10.3390/biomedicines8090346. PMID:
32932992. PMCID:
PMC7555027.
Article
12. Kim JH, An GH, Kim JY, et al. 2021; Human pluripotent stem-cell-derived alveolar organoids for modeling pulmonary fibrosis and drug testing. Cell Death Discov. 7:48. DOI:
10.1038/s41420-021-00439-7. PMID:
33723255. PMCID:
PMC7961057.
14. Abo KM, Sainz de Aja J, Lindstrom-Vautrin J, et al. 2022; Air-liquid interface culture promotes maturation and allows environmental exposure of pluripotent stem cell-derived alveolar epithelium. JCI Insight. 7:e155589. DOI:
10.1172/jci.insight.155589. PMID:
35315362. PMCID:
PMC8986076.
Article
15. Huang J, Hume AJ, Abo KM, et al. 2020; SARS-CoV-2 infection of pluripotent stem cell-derived human lung alveolar type 2 cells elicits a rapid epithelial-intrinsic inflammatory response. Cell Stem Cell. 27:962–973.e7. DOI:
10.1016/j.stem.2020.09.013. PMID:
32979316. PMCID:
PMC7500949.
Article
16. Zacharias WJ, Frank DB, Zepp JA, et al. 2018; Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature. 555:251–255. DOI:
10.1038/nature25786. PMID:
29489752. PMCID:
PMC6020060.
Article
19. Rock JR, Onaitis MW, Rawlins EL, et al. 2009; Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A. 106:12771–12775. DOI:
10.1073/pnas.0906850106. PMID:
19625615. PMCID:
PMC2714281.
Article
20. Yang Y, Riccio P, Schotsaert M, et al. 2018; Spatial-temporal lineage restrictions of embryonic p63
+ progenitors establish distinct stem cell pools in adult airways. Dev Cell. 44:752–761.e4. DOI:
10.1016/j.devcel.2018.03.001. PMID:
29587145. PMCID:
PMC5875454.
21. Nabhan AN, Brownfield DG, Harbury PB, Krasnow MA, Desai TJ. 2018; Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science. 359:1118–1123. DOI:
10.1126/science.aam6603. PMID:
29420258. PMCID:
PMC5997265.
Article
22. Choi J, Park JE, Tsagkogeorga G, et al. 2020; Inflammatory signals induce AT2 cell-derived damage-associated transient progenitors that mediate alveolar regeneration. Cell Stem Cell. 27:366–382.e7. DOI:
10.1016/j.stem.2020.06.020. PMID:
32750316. PMCID:
PMC7487779.
Article
23. Kobayashi Y, Tata A, Konkimalla A, et al. 2020; Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat Cell Biol. 22:934–946. DOI:
10.1038/s41556-020-0542-8. PMID:
32661339. PMCID:
PMC7461628.
Article
26. Burgess CL, Huang J, Bawa PS, et al. 2024; Generation of human alveolar epithelial type I cells from pluripotent stem cells. Cell Stem Cell. 31:657–675.e8. DOI:
10.1016/j.stem.2024.03.017. PMID:
38642558.
Article
28. Hogan BLM, Barkauskas CE, Chapman HA, et al. 2014; Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell. 15:123–138. DOI:
10.1016/j.stem.2014.07.012. PMID:
25105578. PMCID:
PMC4212493.
Article
30. Gonzalez RF, Allen L, Gonzales L, Ballard PL, Dobbs LG. 2010; HTII-280, a biomarker specific to the apical plasma membrane of human lung alveolar type II cells. J Histochem Cytochem. 58:891–901. DOI:
10.1369/jhc.2010.956433. PMID:
20566753. PMCID:
PMC2942742.
Article
32. Lim K, Donovan APA, Tang W, et al. 2023; Organoid modeling of human fetal lung alveolar development reveals mechanisms of cell fate patterning and neonatal respiratory disease. Cell Stem Cell. 30:20–37.e9. DOI:
10.1016/j.stem.2022.11.013. PMID:
36493780.
Article
33. Lim K, Rutherford EN, Sun D, et al. 2023; A novel human fetal lung-derived alveolar organoid model reveals mechanisms of surfactant protein C maturation relevant to interstitial lung disease. bioRxiv [Preprint]. 2023.08.30.555522. DOI:
10.1101/2023.08.30.555522.
Article
34. Olmeda B, Martínez-Calle M, Pérez-Gil J. 2017; Pulmonary surfactant metabolism in the alveolar airspace: biogenesis, extracellular conversions, recycling. Ann Anat. 209:78–92. DOI:
10.1016/j.aanat.2016.09.008. PMID:
27773772.
Article
35. Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR. 2004;
In vivo differentiation potential of tracheal basal cells: evidence for multipotent and unipotent subpopulations. Am J Physiol Lung Cell Mol Physiol. 286:L643–L649. DOI:
10.1152/ajplung.00155.2003. PMID:
12871857.
37. Hawkins F, Kramer P, Jacob A, et al. 2017; Prospective isolation of NKX2-1-expressing human lung progenitors derived from pluripotent stem cells. J Clin Invest. 127:2277–2294. DOI:
10.1172/JCI89950. PMID:
28463226. PMCID:
PMC5451263.
Article
38. Hein RFC, Conchola AS, Fine AS, et al. 2022; Stable iPSC-derived NKX2-1+ lung bud tip progenitor organoids give rise to airway and alveolar cell types. Development. 149:dev200693. DOI:
10.1242/dev.200693. PMID:
36039869. PMCID:
PMC9534489.
Article
39. McCauley KB, Hawkins F, Serra M, Thomas DC, Jacob A, Kotton DN. 2017; Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of Wnt signaling. Cell Stem Cell. 20:844–857.e6. DOI:
10.1016/j.stem.2017.03.001. PMID:
28366587. PMCID:
PMC5457392.
Article
40. Boggaram V. 2009; Thyroid transcription factor-1 (TTF-1/Nkx2.1/TITF1) gene regulation in the lung. Clin Sci. 116:27–35. DOI:
10.1042/CS20080068. PMID:
19037882.
Article
44. Nikolić MZ, Caritg O, Jeng Q, et al. 2017; Human embryonic lung epithelial tips are multipotent progenitors that can be expanded
in vitro as long-term self-renewing organoids. Elife. 6:e26575. DOI:
10.7554/eLife.26575. PMID:
28665271. PMCID:
PMC5555721.
Article