Investig Clin Urol.  2024 May;65(3):202-216. 10.4111/icu.20230435.

Applications of artificial intelligence in urologic oncology

Affiliations
  • 1Department of Urology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
  • 2STARLABS Corp., Seoul, Korea
  • 3Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Abstract

Purpose
With the recent rising interest in artificial intelligence (AI) in medicine, many studies have explored the potential and usefulness of AI in urological diseases. This study aimed to comprehensively review recent applications of AI in urologic oncology.
Materials and Methods
We searched the PubMed-MEDLINE databases for articles in English on machine learning (ML) and deep learning (DL) models related to general surgery and prostate, bladder, and kidney cancer. The search terms were a combination of keywords, including both “urology” and “artificial intelligence” with one of the following: “machine learning,” “deep learning,” “neural network,” “renal cell carcinoma,” “kidney cancer,” “urothelial carcinoma,” “bladder cancer,” “prostate cancer,” and “robotic surgery.”
Results
A total of 58 articles were included. The studies on prostate cancer were related to grade prediction, improved diagnosis, and predicting outcomes and recurrence. The studies on bladder cancer mainly used radiomics to identify aggressive tumors and predict treatment outcomes, recurrence, and survival rates. Most studies on the application of ML and DL in kidney cancer were focused on the differentiation of benign and malignant tumors as well as prediction of their grade and subtype. Most studies suggested that methods using AI may be better than or similar to existing traditional methods.
Conclusions
AI technology is actively being investigated in the field of urological cancers as a tool for diagnosis, prediction of prognosis, and decision-making and is expected to be applied in additional clinical areas soon. Despite technological, legal, and ethical concerns, AI will change the landscape of urological cancer management.

Keyword

Artificial intelligence; Deep learning; Machine learning; Urological cancer
Full Text Links
  • ICU
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr