1. Happ MB. Interpretation of nonvocal behavior and the meaning of voicelessness in critical care. Soc Sci Med. 2000; 50:1247–55.
Article
2. Carroll SM. Nonvocal ventilated patients perceptions of being understood. West J Nurs Res. 2004; 26:85–103.
Article
3. Leathart AJ. Communication and socialisation (1): an exploratory study and explanation for nurse-patient communication in an ITU. Intensive Crit Care Nurs. 1994; 10:93–104.
Article
4. Menzel LK. Factors related to the emotional responses of intubated patients to being unable to speak. Heart Lung. 1998; 27:245–52.
Article
5. Eliseyev A, Gonzales IJ, Le A, Doyle K, Egbebike J, Velazquez A, et al. Development of a brain-computer interface for patients in the critical care setting. PLoS One. 2021; 16:e0245540.
Article
6. Jolley SE, Bunnell AE, Hough CL. ICU-acquired weakness. Chest. 2016; 150:1129–40.
Article
7. Vanhorebeek I, Latronico N, Van den Berghe G. ICU-acquired weakness. Intensive Care Med. 2020; 46:637–53.
Article
8. Frolov AA, Bobrov PD. Brain-computer interfaces: neurophysiological bases and clinical applications. Neurosci Behav Physiol. 2018; 48:1033–40.
Article
9. Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer SS, et al. Moving magnetoencephalography towards real-world applications with a wearable system. Nature. 2018; 555:657–61.
Article
10. Daly JJ, Wolpaw JR. Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 2008; 7:1032–43.
Article
11. Cervera MA, Soekadar SR, Ushiba J, Millán JD, Liu M, Birbaumer N, et al. Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Ann Clin Transl Neurol. 2018; 5:651–63.
Article
12. Ang KK, Guan C, Chua KS, Ang BT, Kuah C, Wang C, et al. A clinical study of motor imagery-based brain-computer interface for upper limb robotic rehabilitation. Annu Int Conf IEEE Eng Med Biol Soc. 2009; 2009:5981–4.
13. Cheng N, Phua KS, Lai HS, Tam PK, Tang KY, Cheng KK, et al. Brain-computer interface-based soft robotic glove rehabilitation for stroke. IEEE Trans Biomed Eng. 2020; 67:3339–51.
Article
14. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain-computer interfaces for communication and control. Clin Neurophysiol. 2002; 113:767–91.
Article
15. Kübler A, Kotchoubey B, Kaiser J, Wolpaw JR, Birbaumer N. Brain-computer communication: unlocking the locked in. Psychol Bull. 2001; 127:358–75.
Article
16. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006; 442:164–71.
Article
17. Tankus A, Fried I, Shoham S. Structured neuronal encoding and decoding of human speech features. Nat Commun. 2012; 3:1015.
Article
18. Willett FR, Kunz EM, Fan C, Avansino DT, Wilson GH, Choi EY, et al. A high-performance speech neuroprosthesis. Nature. 2023; 620:1031–6.
Article
19. Dougherty MP, Poch AM, Chorich LP, Hawkins ZA, Xu H, Roman RA, et al. Unexplained female infertility associated with genetic disease variants. N Engl J Med. 2023; 388:1055–6.
Article
20. Edlow BL, Fecchio M, Bodien YG, Comanducci A, Rosanova M, Casarotto S, et al. Measuring consciousness in the intensive care unit. Neurocrit Care. 2023; 38:584–90.
Article
21. Claassen J, Doyle K, Matory A, Couch C, Burger KM, Velazquez A, et al. Detection of brain activation in unresponsive patients with acute brain injury. N Engl J Med. 2019; 380:2497–505.
Article
22. Egbebike J, Shen Q, Doyle K, Der-Nigoghossian CA, Panicker L, Gonzales IJ, et al. Cognitive-motor dissociation and time to functional recovery in patients with acute brain injury in the USA: a prospective observational cohort study. Lancet Neurol. 2022; 21:704–13.
Article
23. Dehzangi O, Farooq M. Portable brain-computer interface for the intensive care unit patient communication using subject-dependent SSVEP identification. Biomed Res Int. 2018; 2018:9796238.
Article
24. Zhang R, Xu Z, Zhang L, Cao L, Hu Y, Lu B, et al. The effect of stimulus number on the recognition accuracy and information transfer rate of SSVEP-BCI in augmented reality. J Neural Eng. 2022; 19:036010.
Article
25. Ladouce S, Darmet L, Torre Tresols JJ, Velut S, Ferraro G, Dehais F. Improving user experience of SSVEP BCI through low amplitude depth and high frequency stimuli design. Sci Rep. 2022; 12:8865.
Article
26. Peters B, Bedrick S, Dudy S, Eddy B, Higger M, Kinsella M, et al. SSVEP BCI and eye tracking use by individuals with late-stage ALS and visual impairments. Front Hum Neurosci. 2020; 14:595890.
Article
27. Siribunyaphat N, Punsawad Y. Steady-state visual evoked potential-based brain-computer interface using a novel visual stimulus with quick response (QR) code pattern. Sensors (Basel). 2022; 22:1439.
Article
28. Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol. 1988; 70:510–23.
Article
29. Guan C, Thulasidas M, Wu J. High performance P300 speller for brain-computer interface. In : IEEE International Workshop on Biomedical Circuits and Systems; 2004 Dec 1-3; Singapore. p. S3/5/INV–S3/13.
Article
30. Pan J, Chen X, Ban N, He J, Chen J, Huang H. Advances in P300 brain-computer interface spellers: toward paradigm design and performance evaluation. Front Hum Neurosci. 2022; 16:1077717.
Article
31. Pan J, Li Y, Gu Z, Yu Z. A comparison study of two P300 speller paradigms for brain-computer interface. Cogn Neurodyn. 2013; 7:523–9.
Article
32. Guy V, Soriani MH, Bruno M, Papadopoulo T, Desnuelle C, Clerc M. Brain computer interface with the P300 speller: usability for disabled people with amyotrophic lateral sclerosis. Ann Phys Rehabil Med. 2018; 61:5–11.
Article
33. Miao Y, Yin E, Allison BZ, Zhang Y, Chen Y, Dong Y, et al. An ERP-based BCI with peripheral stimuli: validation with ALS patients. Cogn Neurodyn. 2020; 14:21–33.
Article
34. Jalilpour S, Hajipour Sardouie S, Mijani A. A novel hybrid BCI speller based on RSVP and SSVEP paradigm. Comput Methods Programs Biomed. 2020; 187:105326.
Article
35. Santamaria-Vazquez E, Martinez-Cagigal V, Gomez-Pilar J, Hornero R. Asynchronous control of ERP-based BCI spellers using steady-state visual evoked potentials elicited by peripheral stimuli. IEEE Trans Neural Syst Rehabil Eng. 2019; 27:1883–92.
Article
36. Lu Z, Li Q, Gao N, Yang J, Bai O. A novel audiovisual P300-speller paradigm based on cross-modal spatial and semantic congruence. Front Neurosci. 2019; 13:1040.
Article
37. Pires G, Barbosa S, Nunes UJ, Gonçalves E. Visuo-auditory stimuli with semantic, temporal and spatial congruence for a P300-based BCI: an exploratory test with an ALS patient in a completely locked-in state. J Neurosci Methods. 2022; 379:109661.
Article
38. Korkmaz OE, Aydemir O, Oral EA, Ozbek IY. An efficient 3D column-only P300 speller paradigm utilizing few numbers of electrodes and flashings for practical BCI implementation. PLoS One. 2022; 17:e0265904.
Article
39. Noorzadeh S, Rivet B, Jutten C. 3-D Interface for the P300 speller BCI. IEEE Trans Hum Mach Syst. 2020; 50:604–12.
Article
40. Li R, Song WQ, Du JB, Huo S, Shan GX. Connecting the P300 to the diagnosis and prognosis of unconscious patients. Neural Regen Res. 2015; 10:473–80.
Article
41. Rao RP. Brain-computer interfacing: an introduction. Cambridge University Press;2013.
42. Yu Y, Zhou Z, Liu Y, Jiang J, Yin E, Zhang N, et al. Self-paced operation of a wheelchair based on a hybrid brain-computer interface combining motor imagery and P300 potential. IEEE Trans Neural Syst Rehabil Eng. 2017; 25:2516–26.
Article
43. Liu Y, Liu Y, Tang J, Yin E, Hu D, Zhou Z. A self-paced BCI prototype system based on the incorporation of an intelligent environment-understanding approach for rehabilitation hospital environmental control. Comput Biol Med. 2020; 118:103618.
Article
44. Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR. BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng. 2004; 51:1034–843.
Article
45. Ang KK, Guan C, Phua KS, Wang C, Zhao L, Teo WP, et al. Facilitating effects of transcranial direct current stimulation on motor imagery brain-computer interface with robotic feedback for stroke rehabilitation. Arch Phys Med Rehabil. 2015; 96(3 Suppl):S79–87.
Article
46. Benzy VK, Vinod AP, Subasree R, Alladi S, Raghavendra K. Motor imagery hand movement direction decoding using brain computer interface to aid stroke recovery and rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2020; 28:3051–62.
Article
47. Chatelle C, Spencer CA, Cash SS, Hochberg LR, Edlow BL. Feasibility of an EEG-based brain-computer interface in the intensive care unit. Clin Neurophysiol. 2018; 129:1519–25.
Article
48. Höhne J, Holz E, Staiger-Sälzer P, Müller KR, Kübler A, Tangermann M. Motor imagery for severely motor-impaired patients: evidence for brain-computer interfacing as superior control solution. PLoS One. 2014; 9:e104854.
Article
49. Amin SU, Alsulaiman M, Muhammad G, Mekhtiche MA, Hossain MS. Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion. Future Gener Comput Syst. 2019; 101:542–54.
Article
50. Chen Z, Wang Y, Song Z. Classification of motor imagery electroencephalography signals based on image processing method. Sensors (Basel). 2021; 21:4646.
Article
51. Dong E, Li C, Li L, Du S, Belkacem AN, Chen C. Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain-computer interfaces. Med Biol Eng Comput. 2017; 55:1809–18.
Article
52. León J, Escobar JJ, Ortiz A, Ortega J, González J, Martín-Smith P, et al. Deep learning for EEG-based Motor Imagery classification: accuracy-cost trade-off. PLoS One. 2020; 15:e0234178.
Article
53. Cantillo-Negrete J, Carino-Escobar RI, Carrillo-Mora P, Barraza-Madrigal JA, Arias-Carrión O. Robotic orthosis compared to virtual hand for Brain-Computer Interface feedback. Biocybern Biomed Eng. 2019; 39:263–72.
Article
54. Cantillo-Negrete J, Carino-Escobar RI, Carrillo-Mora P, Rodriguez-Barragan MA, Hernandez-Arenas C, Quinzaños-Fresnedo J, et al. Brain-computer interface coupled to a robotic hand orthosis for stroke patients’ neurorehabilitation: a crossover feasibility study. Front Hum Neurosci. 2021; 15:656975.
Article
55. Spüler M, López-Larraz E, Ramos-Murguialday A. On the design of EEG-based movement decoders for completely paralyzed stroke patients. J Neuroeng Rehabil. 2018; 15:110.
Article
56. Karimi F, Kofman J, Mrachacz-Kersting N, Farina D, Jiang N. Detection of movement related cortical potentials from EEG using constrained ICA for brain-computer interface applications. Front Neurosci. 2017; 11:356.
Article
57. Shibasaki H, Barrett G, Halliday E, Halliday AM. Cortical potentials associated with voluntary foot movement in man. Electroencephalogr Clin Neurophysiol. 1981; 52:507–16.
Article
58. Shakeel A, Navid MS, Anwar MN, Mazhar S, Jochumsen M, Niazi IK. A review of techniques for detection of movement intention using movement-related cortical potentials. Comput Math Methods Med. 2015; 2015:346217.
Article
59. Shibasaki H, Hallett M. What is the Bereitschaftspotential? Clin Neurophysiol. 2006; 117:2341–56.
Article
60. Berchicci M, Menotti F, Macaluso A, Di Russo F. The neurophysiology of central and peripheral fatigue during sub-maximal lower limb isometric contractions. Front Hum Neurosci. 2013; 7:135.
Article
61. Schillings ML, Kalkman JS, van der Werf SP, Bleijenberg G, van Engelen BG, Zwarts MJ. Central adaptations during repetitive contractions assessed by the readiness potential. Eur J Appl Physiol. 2006; 97:521–6.
Article
62. de Morree HM, Klein C, Marcora SM. Perception of effort reflects central motor command during movement execution. Psychophysiology. 2012; 49:1242–53.
Article
63. Wiese H, Stude P, Sarge R, Nebel K, Diener HC, Keidel M. Reorganization of motor execution rather than preparation in poststroke hemiparesis. Stroke. 2005; 36:1474–9.
Article
64. Berchicci M, Quinzi F, Dainese A, Di Russo F. Time-source of neural plasticity in complex bimanual coordinative tasks: juggling. Behav Brain Res. 2017; 328:87–94.
Article
65. Jochumsen M, Rovsing C, Rovsing H, Cremoux S, Signal N, Allen K, et al. Quantification of movement-related EEG correlates associated with motor training: a study on movement-related cortical potentials and sensorimotor rhythms. Front Hum Neurosci. 2017; 11:604.
Article
66. Xu R, Jiang N, Vuckovic A, Hasan M, Mrachacz-Kersting N, Allan D, et al. Movement-related cortical potentials in paraplegic patients: abnormal patterns and considerations for BCI-rehabilitation. Front Neuroeng. 2014; 7:35.
Article
67. Yuan H, Liu T, Szarkowski R, Rios C, Ashe J, He B. Negative covariation between task-related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex: an EEG and fMRI study of motor imagery and movements. Neuroimage. 2010; 49:2596–606.
Article
68. Yuan H, He B. Brain-computer interfaces using sensorimotor rhythms: current state and future perspectives. IEEE Trans Biomed Eng. 2014; 61:1425–35.
Article
69. Tsuchimoto S, Shibusawa S, Mizuguchi N, Kato K, Ebata H, Liu M, et al. Resting-state fluctuations of EEG sensorimotor rhythm reflect BOLD activities in the pericentral areas: a simultaneous EEG-fMRI study. Front Hum Neurosci. 2017; 11:356.
Article
70. Okada S, Urakami Y, Kato T, Tsuji M, Inoue R. The Rolandic mu rhythm: a clinical study of the atypical group. Clin Electroencephalogr. 1992; 23:10–8.
Article
71. Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999; 110:1842–57.
Article
72. Pfurtscheller G, Brunner C, Schlögl A, Lopes da Silva FH. Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage. 2006; 31:153–9.
Article
73. Nann M, Peekhaus N, Angerhöfer C, Soekadar SR. Feasibility and safety of bilateral hybrid EEG/EOG brain/neural-machine interaction. Front Hum Neurosci. 2020; 14:580105.
Article
74. Araujo RS, Silva CR, Netto SP, Morya E, Brasil FL. Development of a low-cost EEG-controlled hand exoskeleton 3D printed on textiles. Front Neurosci. 2021; 15:661569.
Article
75. Massardi S, Pinto-Fernandez D, Babič J, Dežman M, Trošt A, Grosu V, et al. Relevance of hazards in exoskeleton applications: a survey-based enquiry. J Neuroeng Rehabil. 2023; 20:68.
Article
76. Onose G, Grozea C, Anghelescu A, Daia C, Sinescu CJ, Ciurea AV, et al. On the feasibility of using motor imagery EEG-based brain-computer interface in chronic tetraplegics for assistive robotic arm control: a clinical test and long-term post-trial follow-up. Spinal Cord. 2012; 50:599–608.
Article
77. Long J, Li Y, Wang H, Yu T, Pan J, Li F. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair. IEEE Trans Neural Syst Rehabil Eng. 2012; 20:720–9.
Article
78. Yu Y, Liu Y, Jiang J, Yin E, Zhou Z, Hu D. An asynchronous control paradigm based on sequential motor imagery and its application in wheelchair navigation. IEEE Trans Neural Syst Rehabil Eng. 2018; 26:2367–75.
Article