Ann Clin Neurophysiol.  2024 Apr;26(1):1-7. 10.14253/acn.23014.

Functional neuroanatomy of the vestibular cortex and vestibular stimulation methods for neuroimaging studies

Affiliations
  • 1Department of Neurology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea

Abstract

The vestibular cortex is a distributed network of multisensory areas that plays a crucial role in balance, posture, and spatial orientation. The core region of the vestibular cortex is the parietoinsular vestibular cortex (PIVC), which is located at the junction between the posterior insula, parietal operculum, and retroinsular region. The PIVC is connected to other vestibular areas, the primary and secondary somatosensory cortices, and the premotor and posterior parietal cortices. It also sends projections to the vestibular nuclei in the brainstem. The PIVC is a multisensory region that integrates vestibular, visual, and somatosensory information to create a representation of head-in-space motion, which is used to control eye movements, posture, and balance. Other regions of the vestibular cortex include the primary somatosensory, posterior parietal, and frontal cortices. The primary somatosensory cortex is involved in processing information about touch and body position. The posterior parietal cortex is involved in integrating vestibular, visual, and somatosensory information to create a representation of spatial orientation. The frontal cortex is involved in controlling posture, and eye movements. The various methods used to stimulate the vestibular receptors in neuroimaging studies include caloric vestibular stimulation (CVS), galvanic vestibular stimulation (GVS), and auditory vestibular stimulation (AVS). CVS uses warm or cold water or air to stimulate the semicircular canals, GVS uses a weak electrical current to stimulate the vestibular nerve, and AVS uses high-intensity clicks or short tone bursts to stimulate the otolithic receptors.

Keyword

Vestibular system; Vestibular system; Functional magnetic resonance imaging; Caloric test; Functional magnetic resonance imaging; Caloric test

Figure

  • Fig. 1. Human homolog of the parietoinsular vestibular cortex. The posterior insular region and parietal operculum region 2 according to the Julich probabilistic atlas are marked in red. Ant., anterior; Rt., right.


Reference

1. Cullen KE. The vestibular system: multimodal integration and encoding of self-motion for motor control. Trends Neurosci. 2012; 35:185–196.
Article
2. Lopez C, Blanke O, Mast FW. The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis. Neuroscience. 2012; 212:159–179.
Article
3. Fasold O, von Brevern M, Kuhberg M, Ploner CJ, Villringer A, Lempert T, et al. Human vestibular cortex as identified with caloric stimulation in functional magnetic resonance imaging. Neuroimage. 2002; 17:1384–1393.
Article
4. Frank SM, Greenlee MW. An MRI-compatible caloric stimulation device for the investigation of human vestibular cortex. J Neurosci Methods. 2014; 235:208–218.
Article
5. Bense S, Stephan T, Yousry TA, Brandt T, Dieterich M. Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). J Neurophysiol. 2001; 85:886–899.
6. Lobel E, Kleine JF, Bihan DL, Leroy-Willig A, Berthoz A. Functional MRI of galvanic vestibular stimulation. J Neurophysiol. 1998; 80:2699–2709.
7. Stephan T, Deutschländer A, Nolte A, Schneider E, Wiesmann M, Brandt T, et al. Functional MRI of galvanic vestibular stimulation with alternating currents at different frequencies. Neuroimage. 2005; 26:721–732.
8. Janzen J, Schlindwein P, Bense S, Bauermann T, Vucurevic G, Stoeter P, et al. Neural correlates of hemispheric dominance and ipsilaterality within the vestibular system. Neuroimage. 2008; 42:1508–1518.
9. Miyamoto T, Fukushima K, Takada T, de Waele C, Vidal PP. Saccular stimulation of the human cortex: a functional magnetic resonance imaging study. Neurosci Lett. 2007; 423:68–72.
Article
10. Schlindwein P, Mueller M, Bauermann T, Brandt T, Stoeter P, Dieterich M. Cortical representation of saccular vestibular stimulation: VEMPs in fMRI. Neuroimage. 2008; 39:19–31.
11. Ward BK, Roberts DC, Otero-Millan J, Zee DS. A decade of magnetic vestibular stimulation: from serendipity to physics to the clinic. J Neurophysiol. 2019; 121:2013–2019.
12. Ibitoye RT, Mallas EJ, Bourke NJ, Kaski D, Bronstein AM, Sharp DJ. The human vestibular cortex: functional anatomy of OP2, its connectivity and the effect of vestibular disease. Cereb Cortex. 2023; 33:567–582.
13. Geschwind N. Specializations of the human brain. Sci Am. 1979; 241:180–199.
14. Woldorff MG, Tempelmann C, Fell J, Tegeler C, Gaschler-Markefski B, Hinrichs H, et al. Lateralized auditory spatial perception and the contralaterality of cortical processing as studied with functional magnetic resonance imaging and magnetoencephalography. Hum Brain Mapp. 1999; 7:49–66.
15. Brandt T, Dieterich M. The vestibular cortex. Its locations, functions, and disorders. Ann N Y Acad Sci. 1999; 871:293–312.
16. Dieterich M, Bense S, Lutz S, Drzezga A, Stephan T, Bartenstein P, et al. Dominance for vestibular cortical function in the non-dominant hemisphere. Cereb Cortex. 2003; 13:994–1007.
17. Cauzzo S, Singh K, Stauder M, García-Gomar MG, Vanello N, Passino C, et al. Functional connectome of brainstem nuclei involved in autonomic, limbic, pain and sensory processing in living humans from 7 Tesla resting state fMRI. Neuroimage. 2022; 250:118925.
18. Grüsser OJ, Pause M, Schreiter U. Localization and responses of neurones in the parieto-insular vestibular cortex of awake monkeys (Macaca fascicularis). J Physiol. 1990; 430:537–557.
19. Guldin WO, Mirring S, Grüsser OJ. Connections from the neocortex to the vestibular brain stem nuclei in the common marmoset. Neuroreport. 1993; 5:113–116.
20. Brandt T, Dieterich M, Danek A. Vestibular cortex lesions affect the perception of verticality. Ann Neurol. 1994; 35:403–412.
21. zu Eulenburg P, Caspers S, Roski C, Eickhoff SB. Meta-analytical definition and functional connectivity of the human vestibular cortex. Neuroimage. 2012; 60:162–169.
22. Mazzola L, Lopez C, Faillenot I, Chouchou F, Mauguière F, Isnard J. Vestibular responses to direct stimulation of the human insular cortex. Ann Neurol. 2014; 76:609–619.
23. Amunts K, Mohlberg H, Bludau S, Zilles K. Julich-Brain: a 3D probabilistic atlas of the human brain’s cytoarchitecture. Science. 2020; 369:988–992.
24. Suzuki M, Kitano H, Ito R, Kitanishi T, Yazawa Y, Ogawa T, et al. Cortical and subcortical vestibular response to caloric stimulation detected by functional magnetic resonance imaging. Brain Res Cogn Brain Res. 2001; 12:441–449.
25. Schwarz DW, Fredrickson JM. Rhesus monkey vestibular cortex: a bimodal primary projection field. Science. 1971; 172:280–281.
26. Bottini G, Sterzi R, Paulesu E, Vallar G, Cappa SF, Erminio F, et al. Identification of the central vestibular projections in man: a positron emission tomography activation study. Exp Brain Res. 1994; 99:164–169.
27. Emri M, Kisely M, Lengyel Z, Balkay L, Márián T, Mikó L, et al. Cortical projection of peripheral vestibular signaling. J Neurophysiol. 2003; 89:2639–2646.
28. Odkvist LM, Schwarz DW, Fredrickson JM, Hassler R. Projection of the vestibular nerve to the area 3a arm field in the squirrel monkey (saimiri sciureus). Exp Brain Res. 1974; 21:97–105.
29. Guldin WO, Grüsser OJ. Is there a vestibular cortex? Trends Neurosci. 1998; 21:254–259.
30. Ferrè ER, Bottini G, Iannetti GD, Haggard P. The balance of feelings: vestibular modulation of bodily sensations. Cortex. 2013; 49:748–758.
31. Lopez C. A neuroscientific account of how vestibular disorders impair bodily self-consciousness. Front Integr Neurosci. 2013; 7:91.
32. Klam F, Graf W. Discrimination between active and passive head movements by macaque ventral and medial intraparietal cortex neurons. J Physiol. 2006; 574:367–386.
33. Bremmer F, Klam F, Duhamel JR, Ben Hamed S, Graf W. Visual-vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur J Neurosci. 2002; 16:1569–1586.
34. Vitte E, Derosier C, Caritu Y, Berthoz A, Hasboun D, Soulié D. Activation of the hippocampal formation by vestibular stimulation: a functional magnetic resonance imaging study. Exp Brain Res. 1996; 112:523–526.
35. Smith AT, Wall MB, Thilo KV. Vestibular inputs to human motion-sensitive visual cortex. Cereb Cortex. 2012; 22:1068–1077.
36. Paus T. Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci. 2001; 2:417–424.
37. Guterstam A, Björnsdotter M, Gentile G, Ehrsson HH. Posterior cingulate cortex integrates the senses of self-location and body ownership. Curr Biol. 2015; 25:1416–1425.
38. O’Mara SM, Rolls ET, Berthoz A, Kesner RP. Neurons responding to whole-body motion in the primate hippocampus. J Neurosci. 1994; 14:6511–6523.
39. Smith PF. Vestibular-hippocampal interactions. Hippocampus. 1997; 7:465–471.
40. Stackman RW, Clark AS, Taube JS. Hippocampal spatial representations require vestibular input. Hippocampus. 2002; 12:291–303.
41. Irving S, Pradhan C, Dieterich M, Brandt T, Zwergal A, Schöberl F. Transient topographical disorientation due to right-sided hippocampal hemorrhage. Brain Behav. 2018; 8:e01078.
42. Spiegel DR, Smith J, Wade RR, Cherukuru N, Ursani A, Dobruskina Y, et al. Transient global amnesia: current perspectives. Neuropsychiatr Dis Treat. 2017; 13:2691–2703.
43. Lopez C, Blanke O. Nobel Prize centenary: Robert Bárány and the vestibular system. Curr Biol. 2014; 24:R1026–R1028.
44. Nguyen TT, Kang JJ, Oh SY. Thresholds for vestibular and cutaneous perception and oculomotor response induced by galvanic vestibular stimulation. Front Neurol. 2022; 13:955088.
Full Text Links
  • ACN
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr