Environ Anal Health Toxicol.  2024 Mar;39(1):e2024006. 10.5620/eaht.2024006.

Using neutron activation to assess heavy metal pollution in water and sediment along Savannah River

Affiliations
  • 1Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, USA
  • 2Nuclear Reactor Program, Department of Nuclear Engineering, North Carolina State University, Raleigh, USA

Abstract

A comprehensive study was conducted to assess heavy elemental pollution in the Savannah River, which flows through diverse landscapes encompassing agricultural, industrial, and commercial zones in South Carolina and Georgia. The investigation focused on the impacts of various anthropogenic activities on the river, potentially harming human health and aquatic ecosystems. Thirty samples, collected from the beginning of the Savannah River at Lake Hartwell to the Savannah River estuary near the Atlantic Ocean, were analyzed using Instrumental Neutron Activation Analysis. In regions of intense industrial activities, water samples exhibited elevated concentrations of elements such as Al (0.04-1.99 mg/L), Mg (0.4-5.5 mg/L), Ba (0.08-2.8 mg/L), Zn (0.017-0.9 mg/L), Cr (0.005-1.5 mg/L), and Fe (2.8-110.13 mg/L). Similarly, sediment samples near industrial areas also exhibited enhanced concentrations of heavy elements like Cr, Zr, Rb, Co, Zn, Mg, Mn, and Al. The outcome of this study has identified a spatial trend along the Savannah River, revealing major elements responsible for pollution that could disrupt the ecological environment and potentially impact human health.

Keyword

Instrumental Neutron Activation Analysis; Sediment; Water; Savannah River; Heavy elements
Full Text Links
  • EAHT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr