Lab Med Online.  2023 Oct;13(4):318-323. 10.47429/lmo.2023.13.4.318.

Diagnostic Performance of Hepatic Steatosis Algorithms in Korean Population with Metabolic-Associated Fatty Liver Disease

Affiliations
  • 1Department of Laboratory Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea

Abstract

Background
The new nomenclature of metabolic-associated fatty liver disease (MAFLD) has been proposed to describe fatty liver condition associated with metabolic dysfunction. Currently, hepatic steatosis indices for predicting MAFLD have not been extensively studied. The aims of this study were to validate the hepatic steatosis indices for predicting MAFLD in the Korean population and to investigate the effects of the subgroups on their diagnostic performance.
Methods
Clinical and biochemical data were obtained from a total of 12,962 consecutive subjects visiting a health check-up center from January 2022 to December 2022. Hepatic steatosis algorithms such as the fatty liver index (FLI), hepatic steatosis index (HSI), non-alcoholic fatty liver disease liver fat score (NLFS), triglyceride glucose (TyG), triglyceride glucose–body mass index (TyG-BMI), and TyG–waist circumference (TyG-WC) were evaluated.
Results
The TyG-BMI showed the highest area under the receiver operating characteristic curve (AUROC) for the MAFLD (0.877, 95% confidence interval: 0.871–0.882), followed by the FLI (0.872), TyG-WC (0.870), NLFS (0.847), TyG (0.769), and HSI (0.595). The AUROC of the hepatic steatosis algorithms tended to decrease in subgroups with advanced age, overweight/obesity, hypertension, diabetes, or metabolic syndrome.
Conclusions
Hepatic steatosis algorithms can be useful for screening MAFLD in a general Korean population. Risk factors such as obesity, diabetes, or metabolic syndrome may affect the diagnostic performances of hepatic steatosis algorithms. MAFLD subgroups should be considered to optimize the hepatic steatosis assessments by these formulas.

Keyword

Metabolic-associated fatty liver disease (MAFLD); Hepatic steatosis; Korean; Population

Figure

  • Fig. 1 Area under the receiver operating characteristics of hepatic steatosis algorithms for predicting metabolic-associated fatty liver disease. The area under the receiver operating characteristics of each hepatic steatosis algorithm was shown in parentheses. Abbreviations: FLI, fatty liver index; HSI, hepatic steatosis index; NLFS, non-alcoholic fatty liver disease liver fat score; TyG, triglyceride glucose; TyG-BMI, triglyceride glucose-body mass index; TyG-WC, triglyceride glucose-waist circumference.


Reference

1. Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, et al. 2020; A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol. 73:202–9. DOI: 10.1016/j.jhep.2020.03.039. PMID: 32278004.
2. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. 2018; The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 67:328–57. DOI: 10.1002/hep.29367. PMID: 28714183.
3. Chitturi S, Wong VW, Chan WK, Wong GL, Wong SK, Sollano J, et al. 2018; The Asia-Pacific Working Party on Non-alcoholic Fatty Liver Disease guidelines 2017-Part 2: management and special groups. J Gastroenterol Hepatol. 33:86–98. DOI: 10.1111/jgh.13856. PMID: 28692197.
4. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO). 2016; EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 64:1388–402. DOI: 10.1016/j.jhep.2015.11.004. PMID: 27062661.
5. Farahat TM, Ungan M, Vilaseca J, Ponzo J, Gupta PP, Schreiner AD, et al. 2022; The paradigm shift from NAFLD to MAFLD: a global primary care viewpoint. Liver Int. 42:1259–67. DOI: 10.1111/liv.15188. PMID: 35129258.
6. Bedogni G, Bellentani S, Miglioli L, Masutti F, Passalacqua M, Castiglione A, et al. 2006; The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 6:33. DOI: 10.1186/1471-230X-6-33. PMID: 17081293. PMCID: PMC1636651.
7. Kim JH, Kwon SY, Lee SW, Lee CH. 2011; Validation of fatty liver index and lipid accumulation product for predicting fatty liver in Korean population. Liver Int. 31:1600–1. DOI: 10.1111/j.1478-3231.2011.02580.x. PMID: 22093336.
8. Liu Y, Liu S, Huang J, Zhu Y, Lin S. 2022; Validation of five hepatic steatosis algorithms in metabolic-associated fatty liver disease: a population based study. J Gastroenterol Hepatol. 37:938–45. DOI: 10.1111/jgh.15799. PMID: 35174539.
9. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. 2009; Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 120:1640–5. DOI: 10.1161/CIRCULATIONAHA.109.192644. PMID: 19805654.
10. International Expert Committee. 2009; International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care. 32:1327–34. DOI: 10.2337/dc09-9033. PMID: 19502545. PMCID: PMC2699715.
11. American Diabetes Association. 2014; Diagnosis and classification of diabetes mellitus. Diabetes Care. 37(S1):S81–90. DOI: 10.2337/dc14-S081. PMID: 24357215.
12. Lim S, Shin H, Song JH, Kwak SH, Kang SM, Yoon JW, et al. 2011; Increasing prevalence of metabolic syndrome in Korea: the Korean National Health and Nutrition Examination Survey for 1998-2007. Diabetes Care. 34:1323–8. DOI: 10.2337/dc10-2109. PMID: 21505206. PMCID: PMC3114326.
13. Bedogni G, Kahn HS, Bellentani S, Tiribelli C. 2010; A simple index of lipid overaccumulation is a good marker of liver steatosis. BMC Gastroenterol. 10:98. DOI: 10.1186/1471-230X-10-98. PMID: 20738844. PMCID: PMC2940930.
14. Kotronen A, Peltonen M, Hakkarainen A, Sevastianova K, Bergholm R, Johansson LM, et al. 2009; Prediction of non-alcoholic fatty liver disease and liver fat using metabolic and genetic factors. Gastroenterology. 137:865–72. DOI: 10.1053/j.gastro.2009.06.005. PMID: 19524579.
15. Er LK, Wu S, Chou HH, Hsu LA, Teng MS, Sun YC, et al. 2016; Triglyceride glucose-body mass index is a simple and clinically useful surrogate marker for insulin resistance in nondiabetic individuals. PLoS One. 11:e0149731. DOI: 10.1371/journal.pone.0149731. PMID: 26930652. PMCID: PMC4773118.
16. Khamseh ME, Malek M, Abbasi R, Taheri H, Lahouti M, Alaei-Shahmiri F. 2021; Triglyceride glucose index and related parameters (triglyceride glucose-body mass index and triglyceride glucose-waist circumference) identify nonalcoholic fatty liver and liver fibrosis in individuals with overweight/obesity. Metab Syndr Relat Disord. 19:167–73. DOI: 10.1089/met.2020.0109. PMID: 33259744.
17. Lee JH, Kim D, Kim HJ, Lee CH, Yang JI, Kim W, et al. 2010; Hepatic steatosis index: a simple screening tool reflecting nonalcoholic fatty liver disease. Dig Liver Dis. 42:503–8. DOI: 10.1016/j.dld.2009.08.002. PMID: 19766548.
18. Han AL, Lee HK. 2022; Comparison of the diagnostic performance of steatosis indices for discrimination of CT-diagnosed metabolic dysfunction-associated fatty liver disease. Metabolites. 12:664. DOI: 10.3390/metabo12070664. PMID: 35888788. PMCID: PMC9323223.
19. Xue Y, Xu J, Li M, Gao Y. 2022; Potential screening indicators for early diagnosis of NAFLD/MAFLD and liver fibrosis: triglyceride glucose index-related parameters. Front Endocrinol (Lausanne). 13:951689. DOI: 10.3389/fendo.2022.951689. PMID: 36120429. PMCID: PMC9478620.
20. Song S, Son DH, Baik SJ, Cho WJ, Lee YJ. 2022; Triglyceride Glucose-Waist Circumference (TyG-WC) is a reliable marker to predict non-alcoholic fatty liver disease. Biomedicines. 10:2251. DOI: 10.3390/biomedicines10092251. PMID: 36140352. PMCID: PMC9496145.
Full Text Links
  • LMO
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr