Maxillofac Plast Reconstr Surg.  2023;45(1):8. 10.1186/s40902-023-00375-9.

Investigating the accuracy of mandibulectomy and reconstructive surgery using 3D customized implants and surgical guides in a rabbit model

Affiliations
  • 1Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
  • 2Functional Materials and Components R&D Group, Korea Institute of Industrial Technology, Gangneung 25440, Republic of Korea

Abstract

Background
This study aimed to analyze the accuracy of the output of three-dimensional (3D) customized surgical guides and titanium implants in a rabbit model, and of mandibulectomy, reconstructive surgery, and surgical outcome; additionally, the correlation between surgical accuracy and surgical outcomes, including the differences in surgical outcome according to surgical accuracy, was analyzed.
Results
The output of implants was accurately implemented within the error range (− 0.03–0.03 mm), and the surgical accuracy varied depending on the measured area (range − 0.4–1.1 mm). Regarding surgical outcomes, angle between the mandibular lower borders showed the most sensitive results and distance between the lingual cusps of the first molars represented the most accurate outcomes. A significant correlation was noted between surgical accuracy in the anteroposterior length of the upper borders pre- and postoperatively and the angle between the mandibular lower borders (regression coefficient = 0.491, p = 0.028). In the group wherein surgery was performed more accurately, the angle between the mandibular lower borders was reproduced more accurately (p = 0.021). A selective laser melting machine accurately printed the implants as designed. Considering the positive correlation among surgical accuracy in the mandibular upper borders, angle between the mandibular lower borders, and more accurately reproduced angle between the mandibular lower borders, the angle between the mandibular lower borders is considered a good indicator for evaluating the outcomes of reconstructive surgery.
Conclusion
To reduce errors in surgical outcomes, it is necessary to devise a positioner for the surgical guide and design a 3D surgical guide to constantly maintain the direction of bone resection. A fixed area considering the concept of three-point fixation should be selected for stable positioning of the implant; in some cases, bilateral cortical bone fixation should be considered. The angle between the mandibular lower borders is a sensitive indicator for evaluating the outcomes of reconstructive surgery.

Keyword

3D printing; Customized titanium implant; Surgical guide; Accuracy; Rabbit model
Full Text Links
  • MPRS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr