2. Carmeliet P, Ferreira V, Breier G, et al. 1996; Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 380:435–439. DOI:
10.1038/380435a0. PMID:
8602241.
Article
3. Miquerol L, Langille BL, Nagy A. 2000; Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development. 127:3941–3946. DOI:
10.1242/dev.127.18.3941. PMID:
10952892.
Article
5. Gale NW, Dominguez MG, Noguera I, et al. 2004; Haploinsuffi-ciency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci U S A. 101:15949–15954. DOI:
10.1073/pnas.0407290101. PMID:
15520367. PMCID:
PMC524697.
Article
6. Hellström M, Phng LK, Hofmann JJ, et al. 2007; Dll4 signalling through Notch1 regulates formation of tip cells during angio-genesis. Nature. 445:776–780. DOI:
10.1038/nature05571. PMID:
17259973.
Article
10. Stratman AN, Schwindt AE, Malotte KM, Davis GE. 2010; Endo-thelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization. Blood. 116:4720–4730. DOI:
10.1182/blood-2010-05-286872. PMID:
20739660. PMCID:
PMC2996127.
Article
11. Stenzel D, Nye E, Nisancioglu M, Adams RH, Yamaguchi Y, Gerhardt H. 2009; Peripheral mural cell recruitment requires cell-autonomous heparan sulfate. Blood. 114:915–924. DOI:
10.1182/blood-2008-10-186239. PMID:
19398718.
Article
12. Hellström M, Gerhardt H, Kalén M, et al. 2001; Lack of pericytes leads to endothelial hyperplasia and abnormal vascular mor-phogenesis. J Cell Biol. 153:543–553. DOI:
10.1083/jcb.153.3.543. PMID:
11331305. PMCID:
PMC2190573.
Article
14. Fukuhara S, Sako K, Minami T, et al. 2008; Differential function of Tie2 at cell-cell contacts and cell-substratum contacts regulated by angiopoietin-1. Nat Cell Biol. 10:513–526. DOI:
10.1038/ncb1714. PMID:
18425120.
Article
16. Saharinen P, Eklund L, Alitalo K. 2017; Therapeutic targeting of the angiopoietin-TIE pathway. Nat Rev Drug Discov. 16:635–661. DOI:
10.1038/nrd.2016.278. PMID:
28529319.
Article
17. Lobov IB, Brooks PC, Lang RA. 2002; Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci U S A. 99:11205–11210. DOI:
10.1073/pnas.172161899. PMID:
12163646. PMCID:
PMC123234.
Article
18. Liu ZJ, Shirakawa T, Li Y, et al. 2003; Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol. 23:14–25. DOI:
10.1128/MCB.23.1.14-25.2003. PMID:
12482957. PMCID:
PMC140667.
Article
19. Quillien A, Moore JC, Shin M, et al. 2014; Distinct Notch signaling outputs pattern the developing arterial system. Deve-lopment. 141:1544–1552. DOI:
10.1242/dev.099986. PMID:
24598161. PMCID:
PMC4074308.
Article
20. Coultas L, Nieuwenhuis E, Anderson GA, et al. 2010; Hedgehog regulates distinct vascular patterning events through VEGF-dependent and -independent mechanisms. Blood. 116:653–660. DOI:
10.1182/blood-2009-12-256644. PMID:
20339091.
Article
23. Stalmans I, Ng YS, Rohan R, et al. 2002; Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Invest. 109:327–336. DOI:
10.1172/JCI0214362. PMID:
11827992. PMCID:
PMC150858.
Article
24. Seo S, Kume T. 2006; Forkhead transcription factors, Foxc1 and Foxc2, are required for the morphogenesis of the cardiac outflow tract. Dev Biol. 296:421–436. DOI:
10.1016/j.ydbio.2006.06.012. PMID:
16839542.
Article
25. You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY. 2005; Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature. 435:98–104. DOI:
10.1038/nature03511. PMID:
15875024.
Article
26. le Noble F, Fleury V, Pries A, Corvol P, Eichmann A, Re-neman RS. 2005; Control of arterial branching morphogenesis in embryogenesis: go with the flow. Cardiovasc Res. 65:619–628. DOI:
10.1016/j.cardiores.2004.09.018. PMID:
15664388.
Article
27. Peirce SM, Skalak TC. 2003; Microvascular remodeling: a complex continuum spanning angiogenesis to arteriogenesis. Microcir-culation. 10:99–111. DOI:
10.1080/713773592.
Article
35. Godin I, Cumano A. 2002; The hare and the tortoise: an embryonic haematopoietic race. Nat Rev Immunol. 2:593–604. DOI:
10.1038/nri857. PMID:
12154378.
Article
36. Tober J, Koniski A, McGrath KE, et al. 2007; The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hema-topoiesis. Blood. 109:1433–1441. DOI:
10.1182/blood-2006-06-031898. PMID:
17062726. PMCID:
PMC1794060.
Article
37. Rekhtman N, Radparvar F, Evans T, Skoultchi AI. 1999; Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev. 13:1398–1411. DOI:
10.1101/gad.13.11.1398. PMID:
10364157. PMCID:
PMC316770.
Article
38. Frame JM, Fegan KH, Conway SJ, McGrath KE, Palis J. 2016; Definitive hematopoiesis in the yolk sac emerges from Wnt-responsive hemogenic endothelium independently of circulation and arterial identity. Stem Cells. 34:431–444. DOI:
10.1002/stem.2213. PMID:
26418893. PMCID:
PMC4755868.
Article
39. Ghosn E, Yoshimoto M, Nakauchi H, Weissman IL, Her-zenberg LA. 2019; Hematopoietic stem cell-independent hemato-poiesis and the origins of innate-like B lymphocytes. Deve-lopment. 146:dev170571. DOI:
10.1242/dev.170571. PMID:
31371526. PMCID:
PMC6703711.
Article
41. Perdiguero EG, Klapproth K, Schulz C, et al. 2015; The origin of tissue-resident macrophages: when an erythro-myeloid progenitor is an erythro-myeloid progenitor. Immunity. 43:1023–1024. DOI:
10.1016/j.immuni.2015.11.022. PMID:
26682973.
Article
42. Sheng J, Ruedl C, Karjalainen K. 2015; Most tissue-resident macrophages except microglia are derived from fetal hemato-poietic stem cells. Immunity. 43:382–393. DOI:
10.1016/j.immuni.2015.07.016. PMID:
26287683.
Article
44. Lieu YK, Reddy EP. 2009; Conditional c-myb knockout in adult hematopoietic stem cells leads to loss of self-renewal due to impaired proliferation and accelerated differentiation. Proc Natl Acad Sci U S A. 106:21689–21694. DOI:
10.1073/pnas.0907623106. PMID:
19955420. PMCID:
PMC2787467.
Article
45. Motazedian A, Bruveris FF, Kumar SV, et al. 2020; Multipotent RAG1+ progenitors emerge directly from haemogenic endothelium in human pluripotent stem cell-derived haematopoietic organoids. Nat Cell Biol. 22:60–73. DOI:
10.1038/s41556-019-0445-8. PMID:
31907413.
Article
46. Kobayashi M, Shelley WC, Seo W, et al. 2014; Functional B-1 progenitor cells are present in the hematopoietic stem cell-deficient embryo and depend on Cbfβ for their develop-ment. Proc Natl Acad Sci U S A. 111:12151–12156. DOI:
10.1073/pnas.1407370111. PMID:
25092306. PMCID:
PMC4143017.
Article
48. Müller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E. 1994; Development of hematopoietic stem cell activity in the mouse embryo. Immunity. 1:291–301. DOI:
10.1016/1074-7613(94)90081-7. PMID:
7889417.
Article
49. de Bruijn MF, Speck NA, Peeters MC, Dzierzak E. 2000; Defini-tive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J. 19:2465–2474. DOI:
10.1093/emboj/19.11.2465. PMID:
10835345. PMCID:
PMC212758.
Article
50. Taoudi S, Medvinsky A. 2007; Functional identification of the hematopoietic stem cell niche in the ventral domain of the embryonic dorsal aorta. Proc Natl Acad Sci U S A. 104:9399–9403. DOI:
10.1073/pnas.0700984104. PMID:
17517650. PMCID:
PMC1890506.
Article
51. Fadlullah MZH, Neo WH, Lie-A-Ling M, et al. 2022; Murine AGM single-cell profiling identifies a continuum of hemogenic endothelium differentiation marked by ACE. Blood. 139:343–356. DOI:
10.1182/blood.2020007885. PMID:
34517413. PMCID:
PMC9159109.
Article
53. Thambyrajah R, Patel R, Mazan M, et al. 2016; New insights into the regulation by RUNX1 and GFI1(s) proteins of the endothelial to hematopoietic transition generating primordial hematopoietic cells. Cell Cycle. 15:2108–2114. DOI:
10.1080/15384101.2016.1203491. PMID:
27399214. PMCID:
PMC4993433.
Article
54. Lancrin C, Mazan M, Stefanska M, et al. 2012; GFI1 and GFI1B control the loss of endothelial identity of hemogenic endothelium during hematopoietic commitment. Blood. 120:314–322. DOI:
10.1182/blood-2011-10-386094. PMID:
22668850.
Article
56. Zhou Y, Zhang Y, Chen B, et al. 2019; Overexpression of GATA2 enhances development and maintenance of human embryonic stem cell-derived hematopoietic stem cell-like progeni-tors. Stem Cell Reports. 13:31–47. DOI:
10.1016/j.stemcr.2019.05.007. PMID:
31178416. PMCID:
PMC6626852.
Article
57. Abdelfattah A, Hughes-Davies A, Clayfield L, et al. 2021; Gata2 haploinsufficiency promotes proliferation and functional decline of hematopoietic stem cells with myeloid bias during aging. Blood Adv. 5:4285–4290. DOI:
10.1182/bloodadvances.2021004726. PMID:
34496012. PMCID:
PMC8945642.
Article
59. Braet F, Wisse E. 2002; Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol. 1:1. DOI:
10.1186/1476-5926-1-1. PMID:
12437787. PMCID:
PMC131011.
63. Tabula Muris Consortium. Overall coordination. Logistical coordination. . 2018; Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature. 562:367–372. DOI:
10.1038/s41586-018-0590-4. PMID:
30283141. PMCID:
PMC6642641.
69. Vanlandewijck M, He L, Mäe MA, et al. 2018; A molecular atlas of cell types and zonation in the brain vasculature. Nature. 554:475–480. Erratum in: Nature 2018;560:E3. DOI:
10.1038/nature25739. PMID:
29443965.
Article
70. Inverso D, Shi J, Lee KH, et al. 2021; A spatial vascular transcriptomic, proteomic, and phosphoproteomic atlas unveils an angiocrine Tie-Wnt signaling axis in the liver. Dev Cell. 56:1677–1693.e10. DOI:
10.1016/j.devcel.2021.05.001. PMID:
34038707. PMCID:
PMC8191494.
Article
75. Hua Y, Vella G, Rambow F, et al. 2022; Cancer immunotherapies transition endothelial cells into HEVs that generate TCF1
+ T lymphocyte niches through a feed-forward loop. Cancer Cell. 40:1600–1618.e10. Erratum in: Cancer Cell 2023; 41:226. DOI:
10.1016/j.ccell.2022.11.002. PMID:
36423635. PMCID:
PMC9899876.
Article
77. Halpern KB, Shenhav R, Massalha H, et al. 2018; Paired-cell sequencing enables spatial gene expression mapping of liver endothelial cells. Nat Biotechnol. 36:962–970. DOI:
10.1038/nbt.4231. PMID:
30222169. PMCID:
PMC6546596.
Article
79. Dumas SJ, Meta E, Borri M, et al. 2020; Single-cell RNA sequencing reveals renal endothelium heterogeneity and metabolic adaptation to water deprivation. J Am Soc Nephrol. 31:118–138. DOI:
10.1681/ASN.2019080832. PMID:
31818909. PMCID:
PMC6935008.
81. Wee H, Oh HM, Jo JH, Jun CD. 2009; ICAM-1/LFA-1 interaction contributes to the induction of endothelial cell-cell separation: implication for enhanced leukocyte diapedesis. Exp Mol Med. 41:341–348. DOI:
10.3858/emm.2009.41.5.038. PMID:
19307754. PMCID:
PMC2701983.
82. Gerszten RE, Luscinskas FW, Ding HT, et al. 1996; Adhesion of memory lymphocytes to vascular cell adhesion molecule-1-transduced human vascular endothelial cells under simulated physiological flow conditions in vitro. Circ Res. 79:1205–1215. DOI:
10.1161/01.RES.79.6.1205. PMID:
8943959.
Article
83. Amersfoort J, Eelen G, Carmeliet P. 2022; Immunomodulation by endothelial cells - partnering up with the immune system? Nat Rev Immunol. 22:576–588. DOI:
10.1038/s41577-022-00694-4. PMID:
35288707. PMCID:
PMC8920067.
84. Wedgwood JF, Hatam L, Bonagura VR. 1988; Effect of interferon-gamma and tumor necrosis factor on the expression of class I and class II major histocompatibility molecules by cultured human umbilical vein endothelial cells. Cell Im-munol. 111:1–9. DOI:
10.1016/0008-8749(88)90046-9. PMID:
3123068.
85. Limmer A, Ohl J, Kurts C, et al. 2000; Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat Med. 6:1348–1354. DOI:
10.1038/82161. PMID:
11100119.
87. Shin YJ, Evitts KM, Jin S, et al. 2023; Amyloid beta peptides (Aβ) from Alzheimer's disease neuronal secretome induce endothelial activation in a human cerebral microvessel model. Neurobiol Dis. 181:106125. DOI:
10.1016/j.nbd.2023.106125. PMID:
37062307.
88. Nascimento NR, Lessa LM, Kerntopf MR, et al. 2006; Inositols prevent and reverse endothelial dysfunction in diabetic rat and rabbit vasculature metabolically and by scavenging superoxide. Proc Natl Acad Sci U S A. 103:218–223. DOI:
10.1073/pnas.0509779103. PMID:
16373499. PMCID:
PMC1325005.
91. Katakami N. 2018; Mechanism of development of atherosclerosis and cardiovascular disease in diabetes mellitus. J Athero-scler Thromb. 25:27–39. DOI:
10.5551/jat.RV17014. PMID:
28966336. PMCID:
PMC5770221.
92. Tacke F, Alvarez D, Kaplan TJ, et al. 2007; Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest. 117:185–194. DOI:
10.1172/JCI28549. PMID:
17200718. PMCID:
PMC1716202.
93. Li D, Mehta JL. 2000; Upregulation of endothelial receptor for oxidized LDL (LOX-1) by oxidized LDL and implications in apoptosis of human coronary artery endothelial cells: evidence from use of antisense LOX-1 mRNA and chemical inhibitors. Arterioscler Thromb Vasc Biol. 20:1116–1122. DOI:
10.1161/01.ATV.20.4.1116. PMID:
10764682.
95. Renaudineau Y, Grunebaum E, Krause I, et al. 2001; Anti-endothelial cell antibodies (AECA) in systemic sclerosis--increased sensitivity using different endothelial cell substrates and association with other autoantibodies. Autoimmunity. 33:171–179. DOI:
10.3109/08916930109008045. PMID:
11683377.
99. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. 1998; Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell. 92:735–745. DOI:
10.1016/S0092-8674(00)81402-6. PMID:
9529250.
Article
100. Brady J, Neal J, Sadakar N, Gasque P. 2004; Human endosialin (tumor endothelial marker 1) is abundantly expressed in highly malignant and invasive brain tumors. J Neuropathol Exp Neurol. 63:1274–1283. DOI:
10.1093/jnen/63.12.1274. PMID:
15624764.
103. Bergers G, Benjamin LE. 2003; Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 3:401–410. DOI:
10.1038/nrc1093. PMID:
12778130.
104. Guo P, Hu B, Gu W, et al. 2003; Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am J Pathol. 162:1083–1093. DOI:
10.1016/S0002-9440(10)63905-3. PMID:
12651601. PMCID:
PMC1851242.
Article
105. Cao Y, Cao R, Hedlund EM. 2008; R Regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling path-ways. J Mol Med (Berl). 86:785–789. DOI:
10.1007/s00109-008-0337-z. PMID:
18392794.
Article
108. Pouysségur J, Dayan F, Mazure NM. 2006; Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 441:437–443. DOI:
10.1038/nature04871. PMID:
16724055.
Article
109. Waldman AD, Fritz JM, Lenardo MJ. 2020; A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 20:651–668. DOI:
10.1038/s41577-020-0306-5. PMID:
32433532. PMCID:
PMC7238960.
110. Zhang Y, Zhang Z. 2020; The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implica-tions. Cell Mol Immunol. 17:807–821. DOI:
10.1038/s41423-020-0488-6. PMID:
32612154. PMCID:
PMC7395159.
Article
111. Johnson DB, Nebhan CA, Moslehi JJ, Balko JM. 2022; Immune-checkpoint inhibitors: long-term implications of toxicity. Nat Rev Clin Oncol. 19:254–267. DOI:
10.1038/s41571-022-00600-w. PMID:
35082367. PMCID:
PMC8790946.
112. Johnson PC, Gainor JF, Sullivan RJ, Longo DL, Chabner B. 2023; Immune checkpoint inhibitors - the need for innovation. N Engl J Med. 388:1529–1532. DOI:
10.1056/NEJMsb2300232. PMID:
37075146.
114. Schaaf MB, Garg AD, Agostinis P. 2018; Defining the role of the tumor vasculature in antitumor immunity and immuno-therapy. Cell Death Dis. 9:115. DOI:
10.1038/s41419-017-0061-0. PMID:
29371595. PMCID:
PMC5833710.
117. Molon B, Ugel S, Del Pozzo F, et al. 2011; Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med. 208:1949–1962. DOI:
10.1084/jem.20101956. PMID:
21930770. PMCID:
PMC3182051.
Article
118. Motz GT, Santoro SP, Wang LP, et al. 2014; Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med. 20:607–615. DOI:
10.1038/nm.3541. PMID:
24793239. PMCID:
PMC4060245.
Article
119. Rodig N, Ryan T, Allen JA, et al. 2003; Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ T cell activation and cytolysis. Eur J Immunol. 33:3117–3126. DOI:
10.1002/eji.200324270. PMID:
14579280.