3. Saxena R, Sharma SK, Gupta M, Sampada GC. A novel approach for feature selection and classification of diabetes mellitus: machine learning methods. Comput Intell Neurosci. 2022; 2022:3820360.
https://doi.org/10.1155/2022/3820360.
Article
6. Woldemichael FG, Menaria S. In : Prediction of diabetes using data mining techniques. Proceedings of 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI); 2018 May 11–12; Tirunelveli, India. p. 414–8.
https://doi.org/10.1109/ICOEI.2018.8553959.
Article
8. Llaha O, Rista A. Prediction and detection of diabetes using machine learning. In : Proceedings of the 4th International Conference on Recent Trends and Applications in Computer Science and Information Technology (RTACSIT); 2021 May 21–22; Tirana, Albania. p. 94–102.
9. Shailaja K, Seetharamulu B, Jabbar MA. Machine learning in healthcare: a review. In : Proceedings of 2018 2nd International Conference on Electronics, Communication and Aerospace Technology (ICECA); 2018 May 29–31; Coimbatore, India. p. 910–4.
https://doi.org/10.1109/ICECA.2018.8474918.
Article
12. Wei J, Liu X, Xue H, Wang Y, Shi Z. Comparisons of visceral adiposity index, body shape index, body mass index and waist circumference and their associations with diabetes mellitus in adults. Nutrients. 2019; 11(7):1580.
https://doi.org/10.3390/nu11071580.
Article
13. Zhang FL, Ren JX, Zhang P, Jin H, Qu Y, Yu Y, et al. Strong association of waist circumference (WC), body mass index (BMI), waist-to-height ratio (WHtR), and waist-to-hip ratio (WHR) with diabetes: a population-based cross-sectional study in Jilin Province, China. J Diabetes Res. 2021; 2021:8812431.
https://doi.org/10.1155/2021/8812431.
Article
14. Saberi-Karimian M, Mansoori A, Bajgiran MM, Hosseini ZS, Kiyoumarsioskouei A, Rad ES, et al. Data mining approaches for type 2 diabetes mellitus prediction using anthropometric measurements. J Clin Lab Anal. 2023; 37(1):e24798.
https://doi.org/10.1002/jcla.24798.
Article
15. World Health Organization. WHO STEPS surveillance manual: the WHO STEPwise approach to chronic disease risk factor surveillance. Geneva, Switzerland: World Health Organization;2005.
16. Luo W, Phung D, Tran T, Gupta S, Rana S, Karmakar C, et al. Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view. J Med Internet Res. 2016; 18(12):e323.
https://doi.org/10.2196/jmir.5870.
Article
18. Rayburn WF. Diagnosis and classification of diabetes mellitus: highlights from the American Diabetes Association. J Reprod Med. 1997; 42(9):585–6.
19. Babaee E, Tehrani-Banihashem A, Eshrati B, Purabdollah M, Nojomi M. How much hypertension is attributed to overweight, obesity, and hyperglycemia using adjusted population attributable risk in adults? Int J Hypertens. 2020; 2020:4273456.
https://doi.org/10.1155/2020/4273456.
Article
21. Lundberg SM, Lee SI. A unified approach to interpreting model predictions. Adv Neural Inf Process Syst. 2017; 30:4765–74.
23. Chen J, Huang H, Cohn AG, Zhang D, Zhou M. Machine learning-based classification of rock discontinuity trace: SMOTE oversampling integrated with GBT ensemble learning. Int J Min Sci Technol. 2022; 32(2):309–22.
https://doi.org/10.1016/j.ijmst.2021.08.004.
Article
27. Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. CatBoost: unbiased boosting with categorical features. Adv Neural Inf Process Syst. 2018; 31:6639–49.
29. Zhang L, Wang Y, Niu M, Wang C, Wang Z. Machine learning for characterizing risk of type 2 diabetes mellitus in a rural Chinese population: the Henan Rural Cohort Study. Sci Rep. 2020; 10(1):4406.
https://doi.org/10.1038/s41598-020-61123-x.
Article