Ann Lab Med.  2023 May;43(3):290-294. 10.3343/alm.2023.43.3.290.

Evaluation of Cellular Responses to ChAdOx1-nCoV-19 and BNT162b2 Vaccinations

Affiliations
  • 1Department of Laboratory Medicine, Konkuk University School of Medicine, Seoul, Korea
  • 2Department of Laboratory Medicine, Korea University Anam Hospital, Seoul, Korea
  • 3Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea

Abstract

While numerous studies have evaluated humoral responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, data on the cellular responses to these vaccines remain sparse. We evaluated T cell responses to ChAdOx1-nCoV-19 and BNT162b2 vaccinations using an interferon gamma (IFN-γ) release assay (IGRA). ChAdOx1-nCoV-19- and BNT162b2-vaccinated participants initially showed stronger T cell responses than unvaccinated controls. The T cell response decreased over time and increased substantially after the administration of a BNT162b2 booster dose. Changes in the T cell response were less significant than those in the anti-receptor-binding domain IgG antibody titer. The study results can serve as baseline data for T cell responses after SARS-CoV-2 vaccination and suggest that the IGRA can be useful in monitoring immunogenicity.

Keyword

Cellular responses; Vaccination; Immunogenicity; Humoral responses; Severe acute respiratory syndrome coronavirus 2

Figure

  • Fig. 1 IGRA and antibody assay results at the indicated time points after vaccination, with responder portions and percentages defined according to the manufacturers’ cut-offs. (A) IFN-γ response in the ChAdOx1-nCoV-19-vaccinated (yellow dots) and control groups (blue dots). (B) IFN-γ response in the BNT162b2-vaccinated (red dots) and control groups. (C) Anti-RBD IgG titer in the ChAdOx1-nCoV-19-vaccinated and control groups. (D) Anti-RBD IgG titer in the BNT162b2-vaccinated and control groups. The horizontal dotted lines indicate the cut-off for each assay. Abbreviations: AU, arbitrary units; IFN-γ, interferon gamma; IGRA, IFN-γ release assay; IU, international units; RBD, receptor-binding domain.


Reference

1. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. 2020; A new coronavirus associated with human respiratory disease in China. Nature. 579:265–9. DOI: 10.1038/s41586-020-2008-3. PMID: 32015508. PMCID: PMC7094943.
Article
2. Cham J, Pandey AC, New J, Huynh T, Hong L, Orendain N, et al. 2022; 6 month serologic response to the Pfizer-BioNTech COVID-19 vaccine among healthcare workers. PLoS One. 17:e0266781.
Article
3. Robertson LJ, Price R, Moore JS, Curry G, Farnan J, Black A, et al. 2022; IgG antibody production and persistence to 6 months following SARS-CoV-2 vaccination: a Northern Ireland observational study. Vaccine. 40:2535–9. DOI: 10.1016/j.vaccine.2022.02.087. PMID: 35346536. PMCID: PMC8900637.
Article
4. Kim JA, Bang HI, Shin JW, Park Y, Kim S, Kim MY, et al. 2022; Immunogenicity of third-dose BNT162b2 mRNA vaccine following two doses of ChAdOx1 in health care workers: a prospective longitudinal study. Ann Lab Med. 42:688–92. DOI: 10.3343/alm.2022.42.6.688. PMID: 35765878. PMCID: PMC9277035.
Article
5. Cameroni E, Bowen JE, Rosen LE, Saliba C, Zepeda SK, Culap K, et al. 2022; Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature. 602:664–70. DOI: 10.1038/s41586-021-04386-2. PMID: 35016195.
Article
6. Zhuang Z, Lai X, Sun J, Chen Z, Zhang Z, Dai J, et al. 2021; Mapping and role of T cell response in SARS-CoV-2-infected mice. J Exp Med. 218:e20202187. DOI: 10.1084/jem.2020218710052021c. PMID: 34653240. PMCID: PMC8526302.
Article
7. McMahan K, Yu J, Mercado NB, Loos C, Tostanoski LH, Chandrashekar A, et al. 2021; Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature. 590:630–4. DOI: 10.1038/s41586-020-03041-6. PMID: 33276369. PMCID: PMC7906955.
Article
8. Woldemeskel BA, Garliss CC, Blankson JN. 2021; SARS-CoV-2 mRNA vaccines induce broad CD4+ T cell responses that recognize SARS-CoV-2 variants and HCoV-NL63. J Clin Invest. 131:e149335. DOI: 10.1172/JCI149335. PMID: 33822770. PMCID: PMC8121504.
Article
9. Geers D, Shamier MC, Bogers S, den Hartog G, Gommers L, Nieuwkoop NN, et al. 2021; SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees. Sci Immunol. 6:eabj1750. DOI: 10.1126/sciimmunol.abj1750. PMID: 34035118. PMCID: PMC9268159.
Article
10. Jung MK, Jeong SD, Noh JY, Kim DU, Jung S, Song JY, et al. 2022; BNT162b2-induced memory T cells respond to the Omicron variant with preserved polyfunctionality. Nat Microbiol. 7:909–17. DOI: 10.1038/s41564-022-01123-x. PMID: 35577972.
Article
11. Mukaka MM. 2012; Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J. 24:69–71.
12. Busà R, Sorrentino MC, Russelli G, Amico G, Miceli V, Miele M, et al. 2022; Specific anti-SARS-CoV-2 humoral and cellular immune responses after booster dose of BNT162b2 Pfizer-BioNTech mRNA-based vaccine: integrated study of adaptive immune system components. Front Immunol. 13:856657. DOI: 10.3389/fimmu.2022.856657. PMID: 35401503. PMCID: PMC8987231.
Article
13. Groß R, Zanoni M, Seidel A, Conzelmann C, Gilg A, Krnavek D, et al. 2022; Heterologous ChAdOx1 nCoV-19 and BNT162b2 prime-boost vaccination elicits potent neutralizing antibody responses and T cell reactivity against prevalent SARS-CoV-2 variants. EBioMedicine. 75:103761. DOI: 10.1016/j.ebiom.2021.103761. PMID: 34929493. PMCID: PMC8682749.
Article
14. Shaw RH, Liu X, Stuart ASV, Greenland M, Aley PK, Andrews NJ, et al. Effect of priming interval on reactogenicity, peak immunological response, and waning after homologous and heterologous COVID-19 vaccine schedules: exploratory analyses of Com-COV, a randomised control trial. Lancet Respir Med. 2022; S2213-2600(22)00163-1.
Article
15. Qui M, Le Bert N, Chan WPW, Tan M, Hang SK, Hariharaputran S, et al. 2022; Favorable vaccine-induced SARS-CoV-2-specific T cell response profile in patients undergoing immune-modifying therapies. J Clin Invest. 132:e159500. DOI: 10.1172/JCI159500. PMID: 35536644. PMCID: PMC9197512.
Article
16. Yao L, Wang GL, Shen Y, Wang ZY, Zhan BD, Duan LJ, et al. 2021; Persistence of antibody and cellular immune responses in coronavirus disease 2019 patients over nine months after infection. J Infect Dis. 224:586–94. DOI: 10.1093/infdis/jiab255. PMID: 33978754. PMCID: PMC8243600.
Article
17. Le Bert N, Tan AT, Kunasegaran K, Tham CYL, Hafezi M, Chia A, et al. 2020; SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 584:457–62. DOI: 10.1038/s41586-020-2550-z. PMID: 32668444.
Article
18. Chen J, Wang R, Gilby NB, Wei GW. 2022; Omicron variant (B.1.1.529): infectivity, vaccine breakthrough, and antibody resistance. J Chem Inf Model. 62:412–22. DOI: 10.1021/acs.jcim.1c01451. PMID: 34989238. PMCID: PMC8751645.
Article
19. Tarke A, Coelho CH, Zhang Z, Dan JM, Yu ED, Methot N, et al. 2022; SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell. 185:847–59.e11. DOI: 10.1016/j.cell.2022.01.015. PMID: 35139340. PMCID: PMC8784649.
Article
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr