Ann Lab Med.  2023 May;43(3):225-236. 10.3343/alm.2023.43.3.225.

Biomarkers in Heart Failure: From Research to Clinical Practice

Affiliations
  • 1Internal Medicine Department, Zaporozhye Medical Academy of Postgraduate Education, Zaporozhye, Ukraine

Abstract

The aim of this narrative review is to summarize contemporary evidence on the use of circulating cardiac biomarkers of heart failure (HF) and to identify a promising biomarker model for clinical use in personalized point-of-care HF management. We discuss the reported biomarkers of HF classified into clusters, including myocardial stretch and biomechanical stress; cardiac myocyte injury; systemic, adipocyte tissue, and microvascular inflammation; cardiac fibrosis and matrix remodeling; neurohumoral activation and oxidative stress; impaired endothelial function and integrity; and renal and skeletal muscle dysfunction. We focus on the benefits and drawbacks of biomarker-guided assistance in daily clinical management of patients with HF. In addition, we provide clear information on the role of alternative biomarkers and future directions with the aim of improving the predictive ability and reproducibility of multiple biomarker models and advancing genomic, transcriptomic, proteomic, and metabolomic evaluations.

Keyword

Heart failure; Cardiac Biomarkers; Multiple Biomarker Models; Prediction; Management

Figure

  • Fig. 1 Circulating biomarkers of the most important conceptual clusters influencing the natural evolution of heart failure (HF). Abbreviations: BDNF, brain-derived neurotrophic factor; hs-cTn, high-sensitivity cardiac troponins; H-FABP, heart-type fatty acid-binding protein; FGF, fibroblast growth factor; Gal3, galectin-3; GDF, growth differentiation factor; GSTP1, glutathione transferase P1; IL, interleukin; KIM-1, kidney injury molecule-1; MR-proANP, mid-regional atrial natriuretic pro-peptide; MR-proADM, mid-regional pro-adrenomedullin; MPO, myeloperoxidase; sST2, soluble isoform of suppression of tumorigenicity 2; 8-OHdG, 8-hydroxy-2´-deoxyguanosine; NT-proBNP, N-terminal brain natriuretic pro-peptide; NGAL, neutrophil gelatinase-associated lipocalin; PICP, procollagen type I carboxyterminal peptide; PIIINP, pro-collagen type III aminoterminal peptide; PICP/PIIINP; MMP-9, matrix metalloproteinase 9; TIMP-1, tissue inhibitor of matrix metalloproteinase; TNF, tumor necrosis factor; Trx1, thioredoxin 1.


Reference

1. Groenewegen A, Rutten FH, Mosterd A, Hoes AW. 2020; Epidemiology of heart failure. Eur J Heart Fail. 22:1342–56. DOI: 10.1002/ejhf.1858. PMID: 32483830. PMCID: PMC7540043.
Article
2. Vasan RS, Xanthakis V, Lyass A, Andersson C, Tsao C, Cheng S, et al. 2018; Epidemiology of left ventricular systolic dysfunction and heart failure in the Framingham study: an echocardiographic study over 3 decades. JACC Cardiovasc Imaging. 11:1–11. DOI: 10.1016/j.jcmg.2017.08.007. PMID: 28917679. PMCID: PMC5756128.
Article
3. Roger VL. 2021; Epidemiology of heart failure: A contemporary perspective. Circ Res. 128:1421–34. DOI: 10.1161/CIRCRESAHA.121.318172. PMID: 33983838.
4. Daw P, Wood GER, Harrison A, Doherty PJ, Veldhuijzen van Zanten JJCS, Dalal HM, et al. 2022; Barriers and facilitators to implementation of a home-based cardiac rehabilitation programme for patients with heart failure in the NHS: a mixed-methods study. BMJ Open. 12:e060221. DOI: 10.1136/bmjopen-2021-060221. PMID: 35831041. PMCID: PMC9280226.
Article
5. Shah KS, Xu H, Matsouaka RA, Bhatt DL, Heidenreich PA, Hernandez AF, et al. 2017; Heart failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes. J Am Coll Cardiol. 70:2476–86. DOI: 10.1016/j.jacc.2017.08.074. PMID: 29141781.
6. Bergamasco A, Luyet-Déruaz A, Gollop ND, Moride Y, Qiao Q. 2022; Epidemiology of asymptomatic pre-heart failure: a systematic review. Curr Heart Fail Rep. 19:146–56. DOI: 10.1007/s11897-022-00542-5. PMID: 35355204. PMCID: PMC9177493.
Article
7. Toth PP, Gauthier D. 2021; Heart failure with preserved ejection fraction: strategies for disease management and emerging therapeutic approaches. Postgrad Med. 133:125–39. DOI: 10.1080/00325481.2020.1842620. PMID: 33283589.
Article
8. Berezin AE, Berezin AA. 2022; Point-of-care heart failure platform: where are we now and where are we going to? Expert Rev Cardiovasc Ther. 20:419–29. DOI: 10.1080/14779072.2022.2080657. PMID: 35588730.
Article
9. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, et al. 2021; 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 42:3599–726. DOI: 10.1093/eurheartj/ehab368. PMID: 34447992.
10. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022; 2022 AHA/ACC/HFSA guideline for the management of heart failure: A report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines. Circulation. 145:e895–e1032. DOI: 10.1161/CIR.0000000000001073.
11. Savic-Radojevic A, Pljesa-Ercegovac M, Matic M, Simic D, Radovanovic S, Simic T. 2017; Novel biomarkers of heart failure. Adv Clin Chem. 79:93–152. DOI: 10.1016/bs.acc.2016.09.002. PMID: 28212715.
Article
12. Omran F, Kyrou I, Osman F, Lim VG, Randeva HS, Chatha K. 2022; Cardiovascular biomarkers: lessons of the past and prospects for the future. Int J Mol Sci. 23:5680. DOI: 10.3390/ijms23105680. PMID: 35628490. PMCID: PMC9143441.
Article
13. Bozkurt B, Coats AJS, Tsutsui H, Abdelhamid CM, Adamopoulos S, Albert N, et al. 2021; Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: endorsed by the Canadian Heart Failure Society, Heart Failure Association of India. Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. Eur J Heart Fail. 23:352–80. DOI: 10.1002/ejhf.2115. PMID: 33605000.
Article
14. Upadhya B, Kitzman DW. 2020; Heart failure with preserved ejection fraction: new approaches to diagnosis and management. Clin Cardiol. 43:145–55. DOI: 10.1002/clc.23321. PMID: 31880340. PMCID: PMC7021648.
Article
15. Mentz RJ, Kelly JP, von Lueder TG, Voors AA, Lam CS, Cowie MR, et al. 2014; Noncardiac comorbidities in heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol. 64:2281–93. DOI: 10.1016/j.jacc.2014.08.036. PMID: 25456761. PMCID: PMC4254505.
16. Sartipy U, Dahlström U, Fu M, Lund LH. 2017; Atrial fibrillation in heart failure with preserved, mid-range, and reduced ejection fraction. JACC Heart Fail. 5:565–74. DOI: 10.1016/j.jchf.2017.05.001. PMID: 28711451.
Article
17. Méndez-Bailón M, Lorenzo-Villalba N, Jiménez-García R, Hernández-Barrera V, de Miguel-Yanes JM, de Miguel-Diez J, et al. 2022; Clinical characteristics, management, and in-hospital mortality in patients with heart failure with reduced ejection fraction according to sex and the presence of type 2 diabetes mellitus. J Clin Med. 11:1030. DOI: 10.3390/jcm11041030. PMID: 35207300. PMCID: PMC8878152.
Article
18. Swaraj S, Kozor R, Arnott C, Di Bartolo BA, A Figtree G. 2021; Heart Failure with Reduced Ejection Fraction-Does Sex Matter? Curr Heart Fail Rep. 18:345–52. DOI: 10.1007/s11897-021-00533-y. PMID: 34778933. PMCID: PMC8616864.
Article
19. Wilcox JE, Fang JC, Margulies KB, Mann DL. 2020; Heart failure with recovered left ventricular ejection fraction: JACC scientific expert panel. J Am Coll Cardiol. 76:719–34. DOI: 10.1016/j.jacc.2020.05.075. PMID: 32762907.
20. Kapłon-Cieślicka A, Benson L, Chioncel O, Crespo-Leiro MG, Coats AJS, Anker SD, et al. 2022; A comprehensive characterization of acute heart failure with preserved versus mildly reduced versus reduced ejection fraction - insights from the ESC-HFA EORP Heart Failure Long-Term Registry. Eur J Heart Fail. 24:335–50. DOI: 10.1002/ejhf.2408. PMID: 34962044.
21. Burnett H, Earley A, Voors AA, Senni M, McMurray JJ, Deschaseaux C, et al. 2017; Thirty years of evidence on the efficacy of drug treatments for chronic heart failure with reduced ejection fraction: A network meta-analysis. Circ Heart Fail. 10:e003529. DOI: 10.1161/CIRCHEARTFAILURE.116.003529. PMID: 28087688. PMCID: PMC5265698.
Article
22. Piek A, Du W, de Boer RA, Silljé HHW. 2018; Novel heart failure biomarkers: why do we fail to exploit their potential? Crit Rev Clin Lab Sci. 55:246–63. DOI: 10.1080/10408363.2018.1460576. PMID: 29663841.
Article
23. Nakagawa Y, Nishikimi T, Kuwahara K. 2019; Atrial and brain natriuretic peptides: hormones secreted from the heart. Peptides. 111:18–25. DOI: 10.1016/j.peptides.2018.05.012. PMID: 29859763.
Article
24. Volpe M, Carnovali M, Mastromarino V. 2016; The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin Sci. 130:57–77. DOI: 10.1042/CS20150469. PMID: 26637405. PMCID: PMC5233571.
Article
25. Homar V, Mirosevic S, Svab I, Lainscak M. 2021; Natriuretic peptides for heart failure screening in nursing homes: a systematic review. Heart Fail Rev. 26:1131–40. DOI: 10.1007/s10741-020-09944-w. PMID: 32200491.
Article
26. Gohar A, Rutten FH, den Ruijter H, Kelder JC, von Haehling S, Anker SD, et al. 2019; Mid-regional pro-atrial natriuretic peptide for the early detection of non-acute heart failure. Eur J Heart Fail. 21:1219–27. DOI: 10.1002/ejhf.1495. PMID: 31209992.
Article
27. Chen Y, Wen Z, Peng L, Liu X, Luo Y, Wu B, et al. Diagnostic value of MR-proANP for heart failure in patients with acute dyspnea: a meta-analysis. 2020; Acta Cardiol. 75:68–74. DOI: 10.1080/00015385.2018.1550887. PMID: 30735473.
Article
28. Mueller C, McDonald K, de Boer RA, Maisel A, Cleland JGF, Kozhuharov N, et al. 2019; Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur J Heart Fail. 21:715–31. DOI: 10.1002/ejhf.1494. PMID: 31222929.
Article
29. Gaborit FS, Kistorp C, Kümler T, Hassager C, Tønder N, Iversen K, et al. 2020; Diagnostic utility of MR-proANP and NT-proBNP in elderly outpatients with a high risk of heart failure: the Copenhagen heart failure risk study. Biomarkers. 25:248–59. DOI: 10.1080/1354750X.2020.1732466. PMID: 32126847.
Article
30. Han ZJ, Wu XD, Cheng JJ, Zhao SD, Gao MZ, Huang HY, et al. 2015; Diagnostic accuracy of natriuretic peptides for heart failure in patients with pleural effusion: A systematic review and updated meta-analysis. PLoS One. 10:e0134376. DOI: 10.1371/journal.pone.0134376. PMID: 26244664. PMCID: PMC4526570.
Article
31. Tanase DM, Radu S, Al Shurbaji S, Baroi GL, Florida Costea C, Turliuc MD, et al. 2019; Natriuretic peptides in heart failure with preserved left ventricular ejection fraction: from molecular evidences to clinical implications. Int J Mol Sci. 20:2629. DOI: 10.3390/ijms20112629. PMID: 31142058. PMCID: PMC6600439.
Article
32. D'Elia E, Iacovoni A, Vaduganathan M, Lorini FL, Perlini S, Senni M. 2017; Neprilysin inhibition in heart failure: mechanisms and substrates beyond modulating natriuretic peptides. Eur J Heart Fail. 19:710–7. DOI: 10.1002/ejhf.799. PMID: 28326642.
33. Dini FL, Bajraktari G, Zara C, Mumoli N, Rosa GM. 2018; Optimizing management of heart failure by using echo and natriuretic peptides in the outpatient unit. Adv Exp Med Biol. 1067:145–59. DOI: 10.1007/5584_2017_137. PMID: 29374825.
Article
34. Israr MZ, Salzano A, Yazaki Y, Voors AA, Ouwerkerk W, Anker SD, et al. 2020; Implications of serial measurements of natriuretic peptides in heart failure: insights from BioStat-CHF. Eur J Heart Fail. 22:1486–90. DOI: 10.1002/ejhf.1951. PMID: 32666670.
35. Felker GM, Anstrom KJ, Adams KF, Ezekowitz JA, Fiuzat M, Houston-Miller N, et al. 2017; Effect of natriuretic peptide-guided therapy on hospitalization or cardiovascular mortality in high-risk patients with heart failure and reduced ejection fraction: A randomized clinical trial. JAMA. 318:713–20. DOI: 10.1001/jama.2017.10565. PMID: 28829876. PMCID: PMC5605776.
Article
36. Zhang J, Pellicori P, Pan D, Dierckx R, Clark AL, Cleland JGF. 2018; Dynamic risk stratification using serial measurements of plasma concentrations of natriuretic peptides in patients with heart failure. Int J Cardiol. 269:196–200. DOI: 10.1016/j.ijcard.2018.06.070. PMID: 30001941.
Article
37. Dini FL, Carluccio E, Montecucco F, Rosa GM, Fontanive P. Combining echo and natriuretic peptides to guide heart failure care in the outpatient setting: A position paper. Eur J Clin Invest. 2017; 47:DOI: 10.1111/eci.12846. PMID: 29044493.
Article
38. Werhahn SM, Becker C, Mende M, Haarmann H, Nolte K, Laufs U, et al. 2022; NT-proBNP as a marker for atrial fibrillation and heart failure in four observational outpatient trials. ESC Heart Fail. 9:100–9. DOI: 10.1002/ehf2.13703. PMID: 34850596. PMCID: PMC8788004.
Article
39. Griffin EA, Wonderling D, Ludman AJ, Al-Mohammad A, Cowie MR, Hardman SMC, et al. 2017; Cost-effectiveness analysis of natriuretic peptide testing and specialist management in patients with suspected acute heart failure. Value Health. 20:1025–33. DOI: 10.1016/j.jval.2017.05.007. PMID: 28964433.
Article
40. Mohiuddin S, Reeves B, Pufulete M, Maishman R, Dayer M, Macleod J, et al. 2016; Model-based cost-effectiveness analysis of B-type natriuretic peptide-guided care in patients with heart failure. BMJ Open. 6:e014010. DOI: 10.1136/bmjopen-2016-014010. PMID: 28031211. PMCID: PMC5223729.
Article
41. Jarolim P. 2015; High sensitivity cardiac troponin assays in the clinical laboratories. Clin Chem Lab Med. 53:635–52. DOI: 10.1515/cclm-2014-0565. PMID: 25252753.
Article
42. Wang XY, Zhang F, Zhang C, Zheng LR, Yang J. 2020; The biomarkers for acute myocardial infarction and heart failure. Biomed Res Int. 2020:2018035. DOI: 10.1155/2020/2018035. PMID: 32016113. PMCID: PMC6988690.
Article
43. Omland T, Røsjø H, Giannitsis E, Agewall S. 2015; Troponins in heart failure. Clin Chim Acta. 443:78–84. DOI: 10.1016/j.cca.2014.08.016. PMID: 25151947.
Article
44. Nagarajan V, Hernandez AV, Tang WH. 2012; Prognostic value of cardiac troponin in chronic stable heart failure: a systematic review. Heart. 98:1778–86. DOI: 10.1136/heartjnl-2012-301779. PMID: 23118345.
Article
45. Aimo A, Januzzi JL Jr, Vergaro G, Ripoli A, Latini R, Masson S, et al. 2019; High-sensitivity troponin T, NT-proBNP and glomerular filtration rate: A multimarker strategy for risk stratification in chronic heart failure. Int J Cardiol. 277:166–72. DOI: 10.1016/j.ijcard.2018.10.079. PMID: 30416028.
Article
46. Packer M, Januzzi JL, Ferreira JP, Anker SD, Butler J, Filippatos G, et al. 2021; Concentration-dependent clinical and prognostic importance of high-sensitivity cardiac troponin T in heart failure and a reduced ejection fraction and the influence of empagliflozin: the EMPEROR-Reduced trial. Eur J Heart Fail. 23:1529–38. DOI: 10.1002/ejhf.2256. PMID: 34053177. PMCID: PMC9291909.
47. Aimo A, Januzzi JL Jr, Vergaro G, Ripoli A, Latini R, Masson S, et al. 2018; Prognostic value of high-sensitivity troponin T in chronic heart failure: an individual patient data meta-analysis. Circulation. 137:286–97. DOI: 10.1161/CIRCULATIONAHA.117.031560. PMID: 29335288.
Article
48. Wettersten N, Maisel A. 2015; Role of cardiac troponin levels in acute heart failure. Card Fail Rev. 1:102–6. DOI: 10.15420/cfr.2015.1.2.102. PMID: 28785441. PMCID: PMC5491037.
Article
49. Vergaro G, Gentile F, Aimo A, Januzzi JL Jr, Richards AM, Lam CSP, et al. 2022; Circulating levels and prognostic cut-offs of sST2, hs-cTnT, and NT-proBNP in women vs. men with chronic heart failure. ESC Heart Fail. 9:2084–95. DOI: 10.1002/ehf2.13883. PMID: 35510529. PMCID: PMC9288762.
Article
50. Goel H, Melot J, Krinock MD, Kumar A, Nadar SK, Lip GYH. 2020; Heart-type fatty acid-binding protein: an overlooked cardiac biomarker. Ann Med. 52:444–61. DOI: 10.1080/07853890.2020.1800075. PMID: 32697102. PMCID: PMC7877932.
Article
51. Young JM, Pickering JW, George PM, Aldous SJ, Wallace J, Frampton CM, et al. 2016; Heart fatty acid binding protein and cardiac troponin: development of an optimal rule-out strategy for acute myocardial infarction. BMC Emerg Med. 16:34. DOI: 10.1186/s12873-016-0089-y. PMID: 27577952. PMCID: PMC5006323.
Article
52. Rezar R, Jirak P, Gschwandtner M, Derler R, Felder TK, Haslinger M, et al. 2020; Heart-type fatty acid-binding protein (H-FABP) and its role as a biomarker in heart failure: what do we know so far? J Clin Med. 9:164. DOI: 10.3390/jcm9010164. PMID: 31936148. PMCID: PMC7019786.
Article
53. Simeunovic D, Odanovic N, Pljesa-Ercegovac M, Radic T, Radovanovic S, Coric V, et al. 2019; Glutathione transferase P1 polymorphism might be a risk determinant in heart failure. Dis Markers. 2019:6984845. DOI: 10.1155/2019/6984845. PMID: 31275451. PMCID: PMC6589253.
Article
54. Andrukhova O, Salama M, Rosenhek R, Gmeiner M, Perkmann T, Steindl J, et al. 2012; Serum glutathione S-transferase P1 1 in prediction of cardiac function. J Card Fail. 18:253–61. DOI: 10.1016/j.cardfail.2011.11.003. PMID: 22385947. PMCID: PMC3314906.
Article
55. Bošnjak I, Selthofer-Relatić K, Včev A. 2015; Prognostic value of galectin-3 in patients with heart failure. Dis Markers. 2015:690205. DOI: 10.1155/2015/690205. PMID: 25960597. PMCID: PMC4415488.
Article
56. Henderson NC, Mackinnon AC, Farnworth SL, Kipari T, Haslett C, Iredale JP, et al. 2008; Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol. 172:288–98. DOI: 10.2353/ajpath.2008.070726. PMID: 18202187. PMCID: PMC2312353.
Article
57. Reifenberg K, Lehr HA, Torzewski M, Steige G, Wiese E, Küpper I, et al. 2007; Interferon-gamma induces chronic active myocarditis and cardiomyopathy in transgenic mice. Am J Pathol. 171:463–72. DOI: 10.2353/ajpath.2007.060906. PMID: 17556594. PMCID: PMC1934522.
58. McMurray JJ. 2010; Clinical practice. Systolic heart failure. N Engl J Med. 362:228–38. DOI: 10.1056/NEJMcp0909392. PMID: 20089973.
59. McCullough PA, Olobatoke A, Vanhecke TE. 2011; Galectin-3: a novel blood test for the evaluation and management of patients with heart failure. Rev Cardiovasc Med. 12:200–10. DOI: 10.3909/ricm0624. PMID: 22249510.
Article
60. Bansal N, Zelnick LR, Soliman EZ, Anderson A, Christenson R, DeFilippi C, et al. 2021; Change in cardiac biomarkers and risk of incident heart failure and atrial fibrillation in CKD: the chronic renal insufficiency cohort (CRIC) study. Am J Kidney Dis. 77:907–19. DOI: 10.1053/j.ajkd.2020.09.021. PMID: 33309861. PMCID: PMC8903040.
Article
61. de Boer RA, Lok DJ, Jaarsma T, van der Meer P, Voors AA, Hillege HL, et al. 2011; Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med. 43:60–8. DOI: 10.3109/07853890.2010.538080. PMID: 21189092. PMCID: PMC3028573.
Article
62. Motiwala SR, Szymonifka J, Belcher A, Weiner RB, Baggish AL, Sluss P, et al. 2013; Serial measurement of galectin-3 in patients with chronic heart failure: results from the ProBNP Outpatient Tailored Chronic Heart Failure Therapy (PROTECT) study. Eur J Heart Fail. 15:1157–63. DOI: 10.1093/eurjhf/hft075. PMID: 23666680.
Article
63. Pascual-Figal DA, Lax A, Perez-Martinez MT, del Carmen Asensio-Lopez M, Sanchez-Mas J. GREAT Network. 2016; Clinical relevance of sST2 in cardiac diseases. Clin Chem Lab Med. 54:29–35. DOI: 10.1515/cclm-2015-0074. PMID: 26544104.
Article
64. Lotierzo M, Dupuy AM, Kalmanovich E, Roubille F, Cristol JP. 2020; sST2 as a value-added biomarker in heart failure. Clin Chim Acta. 501:120–30. DOI: 10.1016/j.cca.2019.10.029. PMID: 31678574.
Article
65. Vergaro G, Aimo A, Januzzi JL Jr, Richards AM, Lam CSP, Latini R, et al. 2022; Cardiac biomarkers retain prognostic significance in patients with heart failure and chronic obstructive pulmonary disease. J Cardiovasc Med. 23:28–36. DOI: 10.2459/JCM.0000000000001281. PMID: 34839321.
66. Emdin M, Aimo A, Vergaro G, Bayes-Genis A, Lupón J, Latini R, et al. 2018; sST2 predicts outcome in chronic heart failure beyond NT-proBNP and high-sensitivity troponin T. J Am Coll Cardiol. 72:2309–20. DOI: 10.1016/j.jacc.2018.08.2165. PMID: 30384887.
67. Huang A, Qi X, Hou W, Qi Y, Zhao N, Liu K. 2018; Prognostic value of sST2 and NT-proBNP at admission in heart failure with preserved, mid-ranged and reduced ejection fraction. Acta Cardiol. 73:41–8. DOI: 10.1080/00015385.2017.1325617. PMID: 28944719.
Article
68. Aimo A, Januzzi JL Jr, Bayes-Genis A, Vergaro G, Sciarrone P, Passino C, et al. 2019; Clinical and prognostic significance of sST2 in heart failure: JACC review topic of the week. J Am Coll Cardiol. 74:2193–203. DOI: 10.1016/j.jacc.2019.08.1039. PMID: 31648713.
69. Nikolov A, Popovski N. 2022; Extracellular matrix in heart disease: focus on circulating collagen type I and III derived peptides as biomarkers of myocardial fibrosis and their potential in the prognosis of heart failure: A concise review. Metabolites. 12:297. DOI: 10.3390/metabo12040297. PMID: 35448484. PMCID: PMC9025448.
Article
70. Flevari P, Theodorakis G, Leftheriotis D, Kroupis C, Kolokathis F, Dima K, et al. 2012; Serum markers of deranged myocardial collagen turnover: their relation to malignant ventricular arrhythmias in cardioverter-defibrillator recipients with heart failure. Am Heart J. 164:530–7. DOI: 10.1016/j.ahj.2012.07.006. PMID: 23067911.
Article
71. He T, Melgarejo JD, Clark AL, Yu YL, Thijs L, Díez J, et al. 2021; Serum and urinary biomarkers of collagen type-I turnover predict prognosis in patients with heart failure. Clin Transl Med. 11:e267. DOI: 10.1002/ctm2.267.
Article
72. Tziakas DN, Chalikias GK, Stakos D, Chatzikyriakou SV, Papazoglou D, Mitrousi K, et al. 2012; Independent and additive prognostic ability of serum carboxy-terminal telopeptide of collagen type-I in heart failure patients: a multi-marker approach with high-negative predictive value to rule out long-term adverse events. Eur J Prev Cardiol. 19:62–71. DOI: 10.1097/HJR.0b013e32833ace76. PMID: 20479644.
Article
73. Chatzikyriakou SV, Tziakas DN, Chalikias GK, Stakos D, Papazoglou D, Lantzouraki A, et al. 2012; Circulating levels of a biomarker of collagen metabolism are associated with health-related quality of life in patients with chronic heart failure. Qual Life Res. 21:143–53. DOI: 10.1007/s11136-011-9932-5. PMID: 21598062.
Article
74. Duprez DA, Gross MD, Kizer JR, Ix JH, Hundley WG, Jacobs DR Jr. 2018; Predictive value of collagen biomarkers for heart failure with and without preserved ejection fraction: MESA (multi-ethnic study of atherosclerosis). J Am Heart Assoc. 7:e007885. DOI: 10.1161/JAHA.117.007885. PMID: 29475876. PMCID: PMC5866330.
Article
75. Berezin AE. Preedy V, editor. Bone-related proteins as markers in vascular remodeling. Biomarkers in bone disease. Biomarkers in disease: methods, discoveries and applications. Dordrecht: Springer;2015.
Article
76. Berezin AE. 2016; Diabetes mellitus related biomarker: the predictive role of growth-differentiation factor-15. Diabetes Metab Syndr. 10:S154–7. DOI: 10.1016/j.dsx.2015.09.016. PMID: 26482961.
Article
77. Emmerson PJ, Wang F, Du Y, Liu Q, Pickard RT, Gonciarz MD, et al. 2017; The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat Med. 23:1215–9. DOI: 10.1038/nm.4393. PMID: 28846098.
Article
78. Rochette L, Dogon G, Zeller M, Cottin Y, Vergely C. 2021; GDF15 and cardiac cells: current concepts and new insights. Int J Mol Sci. 22:8889. DOI: 10.3390/ijms22168889. PMID: 34445593. PMCID: PMC8396208.
Article
79. Li N, Feng Q, Yu F, Zhou J, Guo X. 2022; Plasma growth differentiation factor-15 in patients with "lone" atrial fibrillation. J Clin Lab Anal. 36:e24373. DOI: 10.1002/jcla.24373.
Article
80. Matusik PT, Małecka B, Lelakowski J, Undas A. 2020; Association of NT-proBNP and GDF-15 with markers of a prothrombotic state in patients with atrial fibrillation off anticoagulation. Clin Res Cardiol. 109:426–34. DOI: 10.1007/s00392-019-01522-x. PMID: 31280356. PMCID: PMC7098929.
Article
81. Wang Z, Yang F, Ma M, Bao Q, Shen J, Ye F, et al. 2020; The impact of growth differentiation factor 15 on the risk of cardiovascular diseases: two-sample Mendelian randomization study. BMC Cardiovasc Disord. 20:462. DOI: 10.1186/s12872-020-01744-2. PMID: 33115406. PMCID: PMC7594331.
Article
82. Ayoub KF, Pothineni NVK, Rutland J, Ding Z, Mehta JL. 2017; Immunity, inflammation, and oxidative stress in heart failure: emerging molecular targets. Cardiovasc Drugs Ther. 31:593–608. DOI: 10.1007/s10557-017-6752-z. PMID: 28956198.
Article
83. Sanders-van Wijk S, Tromp J, Beussink-Nelson L, Hage C, Svedlund S, Saraste A, et al. 2020; Proteomic evaluation of the comorbidity-inflammation paradigm in heart failure with preserved ejection fraction: results from the PROMIS-HFpEF study. Circulation. 142:2029–44. DOI: 10.1161/CIRCULATIONAHA.120.045810. PMID: 33034202. PMCID: PMC7686082.
Article
84. van Veldhuisen DJ, Ruilope LM, Maisel AS, Damman K. 2016; Biomarkers of renal injury and function: diagnostic, prognostic and therapeutic implications in heart failure. Eur Heart J. 37:2577–85. DOI: 10.1093/eurheartj/ehv588. PMID: 26543046.
Article
85. Nowak C, Ärnlöv J. 2020; Kidney disease biomarkers improve heart failure risk prediction in the general population. Circ Heart Fail. 13:e006904. DOI: 10.1161/CIRCHEARTFAILURE.120.006904. PMID: 32757644.
Article
86. Nishikimi T, Nakagawa Y. 2018; Adrenomedullin as a biomarker of heart failure. Heart Fail Clin. 14:49–55. DOI: 10.1016/j.hfc.2017.08.006. PMID: 29153200.
Article
87. Gegenhuber A, Struck J, Dieplinger B, Poelz W, Pacher R, Morgenthaler NG, et al. 2007; Comparative evaluation of B-type natriuretic peptide, mid-regional pro-A-type natriuretic peptide, mid-regional pro-adrenomedullin, and copeptin to predict 1-year mortality in patients with acute destabilized heart failure. J Card Fail. 13:42–9. DOI: 10.1016/j.cardfail.2006.09.004. PMID: 17339002.
Article
88. Lubrano V, Balzan S. 2020; Role of oxidative stress-related biomarkers in heart failure: galectin 3, α1-antitrypsin and LOX-1: new therapeutic perspective? Mol Cell Biochem. 464:143–52. DOI: 10.1007/s11010-019-03656-y. PMID: 31782085.
Article
89. Berezin AE, Berezin AA, Lichtenauer M. 2021; Myokines and heart failure: challenging role in adverse cardiac remodeling, myopathy, and clinical outcomes. Dis Markers. 2021:6644631. DOI: 10.1155/2021/6644631. PMID: 33520013. PMCID: PMC7819753.
Article
90. Berezin AA, Fushtey IM, Berezin AE. 2022; The effect of SGLT2 inhibitor dapagliflozin on serum levels of apelin in T2DM patients with heart failure. Biomedicines. 10:1751. DOI: 10.3390/biomedicines10071751. PMID: 35885056. PMCID: PMC9313111.
Article
91. Berezin AA, Lichtenauer M, Boxhammer E, Fushtey IM, Berezin AE. 2022; Serum levels of irisin predict cumulative clinical outcomes in heart failure patients with type 2 diabetes mellitus. Front Physiol. 13:922775. DOI: 10.3389/fphys.2022.922775. PMID: 35651870. PMCID: PMC9149086.
Article
92. Chirinos JA, Orlenko A, Zhao L, Basso MD, Cvijic ME, Li Z, et al. 2020; Multiple plasma biomarkers for risk stratification in patients with heart failure and preserved ejection fraction. J Am Coll Cardiol. 75:1281–95. DOI: 10.1016/j.jacc.2019.12.069. PMID: 32192654. PMCID: PMC7147356.
93. Bayes-Genis A, Richards AM, Maisel AS, Mueller C, Ky B. 2015; Multimarker testing with ST2 in chronic heart failure. Am J Cardiol. 115(S7):76B–80B. DOI: 10.1016/j.amjcard.2015.01.045. PMID: 25697916.
Article
94. Topf A, Mirna M, Ohnewein B, Jirak P, Kopp K, Fejzic D, et al. 2020; The diagnostic and therapeutic value of multimarker analysis in heart failure. An approach to biomarker-targeted therapy. Front Cardiovasc Med. 7:579567. DOI: 10.3389/fcvm.2020.579567. PMID: 33344515. PMCID: PMC7746655.
Article
95. Aldweib N, Elia EG, Brainard SB, Wu F, Sleeper LA, Rodriquez C, et al. 2022; Serial cardiac biomarker assessment in adults with congenital heart disease hospitalized for decompensated heart failure☆. Int J Cardiol Congenit Heart Dis. 7:100336. DOI: 10.1016/j.ijcchd.2022.100336. PMID: 35463849. PMCID: PMC9024322.
Article
96. Berezin AE. 2022; Cell-free long noncoding RNAs as predictive biomarkers for cardiovascular diseases. Int J Cardiol. 359:115–7. DOI: 10.1016/j.ijcard.2022.04.036. PMID: 35439586.
Article
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr