Anat Cell Biol.  2023 Dec;56(4):474-481. Dental characteristics on panoramic radiographs as.

Dental characteristics on panoramic radiographs as parameters for non-invasive age estimation: a pilot study

Affiliations
  • 1Department of Forensic Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
  • 2Division of Forensic Odontology and Disaster Oral Medicine, Department of Forensic Science, Iwate Medical University, Iwate, Japan
  • 3Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Korea
  • 4Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Korea

Abstract

The dental characteristics created by acquired dental treatments can be used as age estimators. This pilot study aimed to analyze the correlation between the number of teeth observed for dental characteristics and chronological age and to develop new non-invasive age estimation models. Dental features on panoramic radiographs (420 radiographs of subjects aged 20–89 years) were classified and coded. The correlation between the number of teeth for each selected code (codes V, X, T, F, P, and L) and age was observed, and multiple regression was performed to analyze the relationship between them. Eleven regression models with various combinations of dental sextants were presented. The model with the data from both sides of the posterior teeth on both jaws showed the best performance (root mean square error of 14.78 years and an adjusted R 2 of 0.461). The model with all teeth was the second-best. Based on these results, we confirmed statistically significant correlations between certain dental features and chronological age. We also observed that some regression models performed sufficiently well to be used as adjunctive methods in forensic practice. These results provide valuable information for the design and performance of future full-scale studies.

Keyword

Age determination by teeth; Dental characteristics; Non-invasive; Panoramic radiography

Figure

  • Fig. 1 Age-related changes in mean numbers of teeth by dental codes. The x-axis represents the age group (in years), and the y-axis represents the mean number of teeth observed. The definitions for each code are provided in Table 2.

  • Fig. 2 Comparison of coefficient of determination (adjusted R2) values for each regression model. The x-axis represents adjusted R2 values, and the y-axis represents regression models based on various combinations of sextants.


Reference

References

1. Cummaudo M, De Angelis D, Magli F, Minà G, Merelli V, Cattaneo C. 2021; Age estimation in the living: a scoping review of population data for skeletal and dental methods. Forensic Sci Int. 320:110689. DOI: 10.1016/j.forsciint.2021.110689. PMID: 33561788.
Article
2. Oh S, Kumagai A, Kim SY, Lee SS. 2022; Accuracy of age estimation and assessment of the 18-year threshold based on second and third molar maturity in Koreans and Japanese. PLoS One. 17:e0271247. DOI: 10.1371/journal.pone.0271247. PMID: 35802665. PMCID: PMC9269881. PMID: e0c1a6f140ad4156a9d8f091bb76f4a1.
Article
3. Olze A, Reisinger W, Geserick G, Schmeling A. 2006; Age estimation of unaccompanied minors. Part II. Dental aspects. Forensic Sci Int. 159 Suppl 1:S65–7. DOI: 10.1016/j.forsciint.2006.02.018. PMID: 16529893.
4. Kwon C, Byun JS, Jung JK, Choi JK. 2013; An analysis of age estimation cases in Korea from the view of social aspects. J Oral Med Pain. 38:235–46. DOI: 10.14476/jomp.2013.38.3.235.
Article
5. Gustafson G. 1950; Age determination on teeth. J Am Dent Assoc. 41:45–54. DOI: 10.14219/jada.archive.1950.0132. PMID: 15428197.
6. Ritz-Timme S, Cattaneo C, Collins MJ, Waite ER, Schütz HW, Kaatsch HJ, Borrman HI. 2000; Age estimation: the state of the art in relation to the specific demands of forensic practise. Int J Legal Med. 113:129–36. DOI: 10.1007/s004140050283. PMID: 10876982.
Article
7. Willems G, Moulin-Romsee C, Solheim T. 2002; Non-destructive dental-age calculation methods in adults: intra- and inter-observer effects. Forensic Sci Int. 126:221–6. DOI: 10.1016/S0379-0738(02)00081-6. PMID: 12062945.
Article
8. Mansour H, Fuhrmann A, Paradowski I, van Well EJ, Püschel K. 2017; The role of forensic medicine and forensic dentistry in estimating the chronological age of living individuals in Hamburg, Germany. Int J Legal Med. 131:593–601. DOI: 10.1007/s00414-016-1517-y. PMID: 28032243.
Article
9. Takei T. 1984; Age estimation from dental attrition and state of dental treatment--by application of the theory of quantification type I. J Nihon Univ Sch Dent. 26:119–32. DOI: 10.2334/josnusd1959.26.119. PMID: 6592290.
10. Yun JI, Lee JY, Chung JW, Kho HS, Kim YK. 2007; Age estimation of Korean adults by occlusal tooth wear. J Forensic Sci. 52:678–83. DOI: 10.1111/j.1556-4029.2007.00414.x. PMID: 17456094.
Article
11. Kim WH, Nam SE, Park YS, Lee SP. 2018; Maxillary first molar wear: a longitudinal study of children. Anat Cell Biol. 51:251–9. DOI: 10.5115/acb.2018.51.4.251. PMID: 30637159. PMCID: PMC6318455.
Article
12. Lee SH, Nam SE, Lee SP. 2015; Evaluation of the effectiveness of the new tooth wear measurement parameters. Anat Cell Biol. 48:284–91. DOI: 10.5115/acb.2015.48.4.284. PMID: 26770880. PMCID: PMC4701703.
Article
13. Shigefuji R, Serikawa M, Usami A. 2022; Observation of mandibular second molar roots and root canal morphology using dental cone-beam computed tomography. Anat Cell Biol. 55:155–60. DOI: 10.5115/acb.22.050. PMID: 35773218. PMCID: PMC9256481.
Article
14. Yoza T, Serikawa M, Sugita T, Harada T, Usami A. 2021; Cone-beam computed tomography observation of maxillary first premolar canal shapes. Anat Cell Biol. 54:424–30. DOI: 10.5115/acb.21.110. PMID: 34465669. PMCID: PMC8693140.
Article
15. Kvaal SI, Kolltveit KM, Thomsen IO, Solheim T. 1995; Age estimation of adults from dental radiographs. Forensic Sci Int. 74:175–85. DOI: 10.1016/0379-0738(95)01760-G. PMID: 7557754.
Article
16. Paewinsky E, Pfeiffer H, Brinkmann B. 2005; Quantification of secondary dentine formation from orthopantomograms-a contribution to forensic age estimation methods in adults. Int J Legal Med. 119:27–30. DOI: 10.1007/s00414-004-0492-x. PMID: 15538610.
Article
17. Roh BY, Lee WJ, Ryu JW, Ahn JM, Yoon CL, Lee SS. 2018; The application of the Kvaal method to estimate the age of live Korean subjects using digital panoramic radiographs. Int J Legal Med. 132:1161–6. DOI: 10.1007/s00414-017-1762-8. PMID: 29260393.
Article
18. Drusini AG. 1993; Age estimation from teeth using soft X-ray findings. Anthropol Anz. 51:41–6. DOI: 10.1127/anthranz/51/1993/41. PMID: 8476273.
Article
19. Jeon HM, Kim JH, Heo JY, Ok SM, Jeong SH, Ahn YW. 2015; Age estimation by radiological measuring pulp chamber of mandibular first molar in Korean adults. J Oral Med Pain. 40:146–54. DOI: 10.14476/jomp.2015.40.4.146.
20. Ikeda N, Umetsu K, Kashimura S, Suzuki T, Oumi M. 1985; Estimation of age from teeth with their soft X-ray findings. Nihon Hoigaku Zasshi. 39:244–50. Japanese. PMID: 4087521.
21. Solheim T. 1988; Dental color as an indicator of age. Gerodontics. 4:114–8. PMID: 3209032.
22. Yamashita H, Murase T, Kondo H, Umehara T, Abe Y, Shingu K, Shinba Y, Mitsuma M, Ikematsu K. 2022; Development of age-estimation formula using postmortem oral findings: a pilot study. Leg Med (Tokyo). 54:101973. DOI: 10.1016/j.legalmed.2021.101973. PMID: 34689115.
Article
23. Azrak B, Victor A, Willershausen B, Pistorius A, Hörr C, Gleissner C. 2007; Usefulness of combining clinical and radiological dental findings for a more accurate noninvasive age estimation. J Forensic Sci. 52:146–50. DOI: 10.1111/j.1556-4029.2006.00300.x. PMID: 17209927.
Article
24. Kawashima W, Uemura M, Toda I, Orihara H, Okusa N, Takemura A. 2016; Age estimation from mandibular angle and oral findings on three-dimensional computed tomography. J Osaka Dent Univ. 50:7–11.
25. Lee SS, Choi JH, Yoon CL, Kim CY, Shin KJ. 2004; The diversity of dental patterns in the orthopantomography and its significance in human identification. J Forensic Sci. 49:784–6. DOI: 10.1520/JFS2003339. PMID: 15317194.
Article
26. Online Browsing Platform. 2016. Dentistry - designation system for teeth and areas of the oral cavity [Internet]. International Organization for Standardization;Available from: https://www.iso.org/obp/ui/#iso:std:iso:3950:ed-4:v1:en:en. cited 2013 Mar 13.
27. Kawashima W, Hatake K, Morimura Y, Kudo R, Nakanishi M, Tamaki S, Kasuda S, Yuui K, Ishitani A. 2013; A new quantitative multi-parameter method improves the accuracy of age estimation from oral findings. Res Pract Forensic Med. 56:211–8.
28. Lee YH, Auh QS, Chun YH, An JS. 2021; Age-related radiomorphometric changes on panoramic radiographs. Clin Exp Dent Res. 7:539–51. DOI: 10.1002/cre2.375. PMID: 33305888. PMCID: PMC8404498. PMID: 522e97b192ec4dfcae1d3c11ef3a0688.
Article
29. Copeland LB, Krall EA, Brown LJ, Garcia RI, Streckfus CF. 2004; Predictors of tooth loss in two US adult populations. J Public Health Dent. 64:31–7. DOI: 10.1111/j.1752-7325.2004.tb02723.x. PMID: 15078059.
Article
30. Lee SS, Byun YS, Park MJ, Choi JH, Yoon CL, Shin KJ. 2010; The chronology of second and third molar development in Koreans and its application to forensic age estimation. Int J Legal Med. 124:659–65. DOI: 10.1007/s00414-010-0513-x. PMID: 20830590.
Article
31. Lee SS, Kim D, Lee S, Lee UY, Seo JS, Ahn YW, Han SH. 2011; Validity of Demirjian's and modified Demirjian's methods in age estimation for Korean juveniles and adolescents. Forensic Sci Int. 211:41–6. DOI: 10.1016/j.forsciint.2011.04.011. PMID: 21561728.
Article
32. Cheong H, Lee SS. 2023; Evaluation of four criteria in assessing third molar maturity for age estimation in Koreans. Heliyon. 9:e13680. DOI: 10.1016/j.heliyon.2023.e13680. PMID: 36873551. PMCID: PMC9981921.
Article
33. Kumagai A, Jeong S, Kim D, Kong HJ, Oh S, Lee SS. 2023; Validation of data mining models by comparing with conventional methods for dental age estimation in Korean juveniles and young adults. Sci Rep. 13:726. DOI: 10.1038/s41598-023-28086-1. PMID: 36639726. PMCID: PMC9839668. PMID: 20f7824a0c68487f9ddf44ef3d4eeb1b.
Article
34. Kengkard P, Choovuthayakorn J, Mahakkanukrauh C, Chitapanarux N, Intasuwan P, Malatong Y, Sinthubua A, Palee P, Lampang SN, Mahakkanukrauh P. 2023; Convolutional neural network of age-related trends digital radiographs of medial clavicle in a Thai population: a preliminary study. Anat Cell Biol. 56:86–93. DOI: 10.5115/acb.22.205. PMID: 36655305. PMCID: PMC9989796.
Article
Full Text Links
  • ACB
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr