Restor Dent Endod.  2022 Feb;47(1):e10. 10.5395/rde.2022.47.e10.

Effect of irrigants on the color stability, solubility, and surface characteristics of calcium-silicate based cements

Affiliations
  • 1Department of Endodontics, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
  • 2Department of Periodontics and Endodontics, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
  • 3Department of Prosthodontics, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
  • 4Division of Prosthodontics, Clinique Universitaire de Médecine Dentaire (CUMD), University of Geneva, Geneva, Switzerland

Abstract


Objectives
This study aimed to investigate the color stability, solubility, and surface characteristics of 3 calcium silicate-based cements (CSCs) after immersion in different solutions.
Materials and Methods
ProRoot white mineral trioxide aggregate (MTA), Biodentine, and Endosequence Root Repair Material (ERRM) were placed in cylindrical molds and stored at 37°C for 24 hours. Each specimen was immersed in distilled water, 5% sodium hypochlorite (NaOCl), 2% chlorhexidine, or 0.1% octenidine hydrochloride (OCT) for 24 hours. Color changes were measured with a spectrophotometer. Solubility was determined using an analytical balance with 10−5 g accuracy. The surface characteristics were analyzed using scanning electron microscopy and energy-dispersive spectroscopy. Data were analyzed using 2-way analysis of variance, the Tukey test, and the paired t-test.
Results
MTA exhibited significant discoloration in contact with NaOCl (p < 0.05). White precipitation occurred on the surfaces of Biodentine and ERRM after contact with the solutions, and none of the materials presented dark brown discoloration. All materials showed significant solubility after immersion in the solutions (p < 0.05), irrespective of the solution type (p > 0.05). The surface topography and elemental composition of the samples showed different patterns of crystal formation and precipitation depending on the solution type.
Conclusions
All materials presented some amount of solubility and showed crystal precipitation after contact with the solutions. Biodentine and ERRM are suitable alternatives to ProRoot MTA as they do not exhibit discoloration. The use of OCT can be considered safe for CSCs.

Keyword

Bioceramic; Bismuth oxide; Irrigation; Physical property; Staining

Figure

  • Figure 1 Images of calcium silicate-based cements before and after contact with different solutions.MTA, mineral trioxide aggregate; ERRM, Endosequence Root Repair Material; CHX, chlorhexidine; NaOCl, sodium hypochlorite; OCT, octenidine hydrochloride.

  • Figure 2 Mean ΔE values of the groups.DW, distilled water; NaOCl, sodium hypochlorite; CHX, chlorhexidine; OCT, octenidine hydrochloride; MTA, mineral trioxide aggregate; ERRM, Endosequence Root Repair Material.

  • Figure 3 Scanning electron microscopy images and energy dispersive spectroscopy graphs of calcium silicate-based cements after immersion in (A) DW, (B) NaOCl, (C) CHX, and (D) OCT.DW, distilled water; NaOCl, sodium hypochlorite; CHX, chlorhexidine; OCT, octenidine hydrochloride; MTA, mineral trioxide aggregate; BD, Biodentine; ERRM, Endosequence Root Repair Material.


Reference

1. Torabinejad M, Chivian N. Clinical applications of mineral trioxide aggregate. J Endod. 1999; 25:197–205. PMID: 10321187.
Article
2. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--part III: clinical applications, drawbacks, and mechanism of action. J Endod. 2010; 36:400–413. PMID: 20171353.
Article
3. Parirokh M, Torabinejad M, Dummer PMH. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part I: vital pulp therapy. Int Endod J. 2018; 51:177–205. PMID: 28836288.
Article
4. Dawood AE, Parashos P, Wong RHK, Reynolds EC, Manton DJ. Calcium silicate-based cements: composition, properties, and clinical applications. J Investig Clin Dent. 2017; 8:e12195.
Article
5. Zehnder M. Root canal irrigants. J Endod. 2006; 32:389–398. PMID: 16631834.
Article
6. Nocca G, Ahmed HMA, Martorana GE, Callà C, Gambarini G, Rengo S, Spagnuolo G. Chromographic analysis and cytotoxic effects of chlorhexidine and sodium hypochlorite reaction mixtures. J Endod. 2017; 43:1545–1552. PMID: 28734651.
7. Tandjung L, Waltimo T, Hauser I, Heide P, Decker EM, Weiger R. Octenidine in root canal and dentine disinfection ex vivo . Int Endod J. 2007; 40:845–851. PMID: 17764460.
8. Sedlock DM, Bailey DM. Microbicidal activity of octenidine hydrochloride, a new alkanediylbis[pyridine] germicidal agent. Antimicrob Agents Chemother. 1985; 28:786–790. PMID: 3909955.
Article
9. Tirali RE, Turan Y, Akal N, Karahan ZC. In vitro antimicrobial activity of several concentrations of NaOCl and Octenisept in elimination of endodontic pathogens. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009; 108:e117–e120.
10. Bukhary S, Balto H. Antibacterial efficacy of octenisept, alexidine, chlorhexidine, and sodium hypochlorite against Enterococcus faecalis biofilms. J Endod. 2017; 43:643–647. PMID: 28258812.
Article
11. Tirali RE, Bodur H, Sipahi B, Sungurtekin E. Evaluation of the antimicrobial activities of chlorhexidine gluconate, sodium hypochlorite and octenidine hydrochloride in vitro . Aust Endod J. 2013; 39:15–18. PMID: 23551508.
Article
12. Thaha KA, Varma RL, Nair MG, Sam Joseph VG, Krishnan U. Interaction between octenidine-based solution and sodium hypochlorite: a mass spectroscopy, proton nuclear magnetic resonance, and scanning electron microscopy-based observational study. J Endod. 2017; 43:135–140. PMID: 27939737.
Article
13. Krishnan U, Saji S, Clarkson R, Lalloo R, Moule AJ. Free active chlorine in sodium hypochlorite solutions admixed with Octenidine, SmearOFF, Chlorhexidine, and EDTA. J Endod. 2017; 43:1354–1359. PMID: 28577962.
Article
14. Coaguila-Llerena H, Rodrigues EM, Santos CS, Ramos SG, Medeiros MC, Chavez-Andrade GM, Guerreiro-Tanomaru JM, Tanomaru-Filho M, Faria G. Effects of octenidine applied alone or mixed with sodium hypochlorite on eukaryotic cells. Int Endod J. 2020; 53:1264–1274. PMID: 32535966.
Article
15. Coaguila-Llerena H, Stefanini da Silva V, Tanomaru-Filho M, Guerreiro Tanomaru JM, Faria G. Cleaning capacity of octenidine as root canal irrigant: a scanning electron microscopy study. Microsc Res Tech. 2018; 81:523–527. PMID: 29436057.
Article
16. Nagas E, Cehreli ZC, Uyanik MO, Durmaz V, Vallittu PK, Lassila LV. Bond strength of mineral trioxide aggregate to root dentin after exposure to different irrigation solutions. Dent Traumatol. 2014; 30:246–249. PMID: 24102741.
Article
17. Chu JHR, Chia KY, Qui AL, Moule A, Ha WN. The effects of sodium hypochlorite and ethylenediaminetetraacetic acid on the microhardness of Mineral Trioxide Aggregate and TotalFill Bioceramic Putty. Aust Endod J. 2020; 46:33–39. PMID: 31054191.
Article
18. Keskin C, Demiryurek EO, Ozyurek T. Color stabilities of calcium silicate-based materials in contact with different irrigation solutions. J Endod. 2015; 41:409–411. PMID: 25576203.
Article
19. Camilleri J. Color stability of white mineral trioxide aggregate in contact with hypochlorite solution. J Endod. 2014; 40:436–440. PMID: 24565667.
Article
20. Krupp C, Bargholz C, Brüsehaber M, Hülsmann M. Treatment outcome after repair of root perforations with mineral trioxide aggregate: a retrospective evaluation of 90 teeth. J Endod. 2013; 39:1364–1368. PMID: 24139255.
Article
21. Gandolfi MG, Siboni F, Botero T, Bossù M, Riccitiello F, Prati C. Calcium silicate and calcium hydroxide materials for pulp capping: biointeractivity, porosity, solubility and bioactivity of current formulations. J Appl Biomater Funct Mater. 2015; 13:43–60. PMID: 25199071.
Article
22. Singh S, Podar R, Dadu S, Kulkarni G, Purba R. Solubility of a new calcium silicate-based root-end filling material. J Conserv Dent. 2015; 18:149–153. PMID: 25829696.
Article
23. Camilleri J. Characterization and hydration kinetics of tricalcium silicate cement for use as a dental biomaterial. Dent Mater. 2011; 27:836–844. PMID: 21600643.
Article
24. Arias-Moliz MT, Farrugia C, Lung CYK, Wismayer PS, Camilleri J. Antimicrobial and biological activity of leachate from light curable pulp capping materials. J Dent. 2017; 64:45–51. PMID: 28645637.
25. Natale LC, Rodrigues MC, Xavier TA, Simões A, de Souza DN, Braga RR. Ion release and mechanical properties of calcium silicate and calcium hydroxide materials used for pulp capping. Int Endod J. 2015; 48:89–94. PMID: 24646329.
Article
26. Aksel H, Küçükkaya Eren S, Askerbeyli Õrs S, Karaismailoğlu E. Surface and vertical dimensional changes of mineral trioxide aggregate and biodentine in different environmental conditions. J Appl Oral Sci. 2018; 27:e20180093. PMID: 30540071.
Article
27. Grech L, Mallia B, Camilleri J. Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent Mater. 2013; 29:e20–e28. PMID: 23199808.
Article
28. Choi Y, Park SJ, Lee SH, Hwang YC, Yu MK, Min KS. Biological effects and washout resistance of a newly developed fast-setting pozzolan cement. J Endod. 2013; 39:467–472. PMID: 23522538.
Article
29. Możyńska J, Metlerski M, Lipski M, Nowicka A. Tooth discoloration induced by different calcium silicate-based cements: a systematic review of in vitro studies. J Endod. 2017; 43:1593–1601. PMID: 28864217.
Article
30. Kang SH, Shin YS, Lee HS, Kim SO, Shin Y, Jung IY, Song JS. Color changes of teeth after treatment with various mineral trioxide aggregate-based materials: an ex vivo study. J Endod. 2015; 41:737–741. PMID: 25732402.
Article
31. Camilleri J. Staining potential of Neo MTA Plus, MTA Plus, and Biodentine used for pulpotomy procedures. J Endod. 2015; 41:1139–1145. PMID: 25887807.
Article
32. Neelakantan P, Berger T, Primus C, Shemesh H, Wesselink PR. Acidic and alkaline chemicals' influence on a tricalcium silicate-based dental biomaterial. J Biomed Mater Res B Appl Biomater. 2019; 107:377–387. PMID: 29656513.
Article
33. Jacinto RC, Linhares-Farina G, Sposito OS, Zanchi CH, Cenci MS. Influence of 2% chlorhexidine on pH, calcium release and setting time of a resinous MTA-based root-end filling material. Braz Oral Res. 2015; 29:1–6.
Article
34. Han L, Okiji T. Uptake of calcium and silicon released from calcium silicate-based endodontic materials into root canal dentine. Int Endod J. 2011; 44:1081–1087. PMID: 21777256.
35. Han L, Okiji T. Bioactivity evaluation of three calcium silicate-based endodontic materials. Int Endod J. 2013; 46:808–814. PMID: 23402321.
36. Elnaghy AM. Influence of acidic environment on properties of biodentine and white mineral trioxide aggregate: a comparative study. J Endod. 2014; 40:953–957. PMID: 24935542.
37. Wang Z, Ma J, Shen Y, Haapasalo M. Acidic pH weakens the microhardness and microstructure of three tricalcium silicate materials. Int Endod J. 2015; 48:323–332. PMID: 24871586.
Article
38. Yan P, Peng B, Fan B, Fan M, Bian Z. The effects of sodium hypochlorite (5.25%), Chlorhexidine (2%), and Glyde File Prep on the bond strength of MTA-dentin. J Endod. 2006; 32:58–60. PMID: 16410071.
Article
39. Barbin LE, Saquy PC, Guedes DF, Sousa-Neto MD, Estrela C, Pécora JD. Determination of para-chloroaniline and reactive oxygen species in chlorhexidine and chlorhexidine associated with calcium hydroxide. J Endod. 2008; 34:1508–1514. PMID: 19026884.
Article
40. Barbin LE, Estrela C, Guedes DF, Spanó JC, Sousa-Neto MD, Pécora JD. Detection of para-chloroaniline, reactive oxygen species, and 1-chloro-4-nitrobenzene in high concentrations of chlorhexidine and in a mixture of chlorhexidine and calcium hydroxide. J Endod. 2013; 39:664–668. PMID: 23611387.
Article
Full Text Links
  • RDE
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr