5. Neuraz A, Looten V, Rance B, Daniel N, Garcelon N, Llanos LC, et al. Do you need embeddings trained on a massive specialized corpus for your clinical natural language processing task? Stud Health Technol Inform. 2019; 264:1558–9.
https://doi.org/10.3233/shti190533.
Article
7. Xiong Y, Wang Z, Jiang D, Wang X, Chen Q, Xu H, et al. A fine-grained Chinese word segmentation and part-of-speech tagging corpus for clinical text. BMC Med Inform Decis Mak. 2019; 19(Suppl 2):66.
https://doi.org/10.1186/s12911-019-0770-7.
Article
9. Jiang M, Chen Y, Liu M, Rosenbloom ST, Mani S, Denny JC, et al. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. J Am Med Inform Assoc. 2011; 18(5):601–6.
https://doi.org/10.1136/amiajnl-2011-000163.
Article
12. Henriksson A, Kvist M, Dalianis H, Duneld M.Identifying adverse drug event information in clinical notes with distributional semantic representations of context. J Biomed Inform. 2015; 57:333–49.
https://doi.org/10.1016/j.jbi.2015.08.013.
Article
13. de Bruijn B, Cherry C, Kiritchenko S, Martin J, Zhu X.Machine-learned solutions for three stages of clinical information extraction: the state of the art at i2b2 2010. J Am Med Inform Assoc. 2011; 18(5):557–62.
https://doi.org/10.1136/amiajnl-2011-000150.
Article
23. Kovacevic A, Dehghan A, Filannino M, Keane JA, Nenadic G.Combining rules and machine learning for extraction of temporal expressions and events from clinical narratives. J Am Med Inform Assoc. 2013; 20(5):859–66.
https://doi.org/10.1136/amiajnl-2013-001625.
Article
24. Xiong Y, Peng H, Xiang Y, Wong KC, Chen Q, Yan J, et al. Leveraging Multi-source knowledge for Chinese clinical named entity recognition via relational graph convolutional network. J Biomed Inform. 2022; 128:104035.
https://doi.org/10.1016/j.jbi.2022.104035.
Article
27. Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging [Internet]. Ithaca (NY): arXiv. org;2015. [cited at 2023 Sep 30]. Available from:
https://arxiv.org/abs/1508.01991.
29. Xu J, Li Z, Wei Q, Wu Y, Xiang Y, Lee HJ, et al. Applying a deep learning-based sequence labeling approach to detect attributes of medical concepts in clinical text. BMC Med Inform Decis Mak. 2019; 19(Suppl 5):236.
https://doi.org/10.1186/s12911-019-0937-2.
Article
30. Li PL, Yuan ZM, Tu WN, Yu K, Lu DX.Medical knowledge extraction and analysis from electronic medical records using deep learning. Chin Med Sci J. 2019; 34(2):133–9.
https://doi.org/10.24920/003589.
Article
31. Suarez-Paniagua V, Rivera Zavala RM, Segura-Bedmar I, Martinez P.A two-stage deep learning approach for extracting entities and relationships from medical texts. J Biomed Inform. 2019; 99:103285.
https://doi.org/10.1016/j.jbi.2019.103285.
Article
32. Weegar R, Perez A, Casillas A, Oronoz M.Recent advances in Swedish and Spanish medical entity recognition in clinical texts using deep neural approaches. BMC Med Inform Decis Mak. 2019; 19(Suppl 7):274.
https://doi.org/10.1186/s12911-019-0981-y.
Article
37. Shi X, Yi Y, Xiong Y, Tang B, Chen Q, Wang X, et al. Extracting entities with attributes in clinical text via joint deep learning. J Am Med Inform Assoc. 2019; 26(12):1584–91.
https://doi.org/10.1093/jamia/ocz158.
Article
40. Chen Y, Zhou C, Li T, Wu H, Zhao X, Ye K, et al. Named entity recognition from Chinese adverse drug event reports with lexical feature based BiLSTM-CRF and tri-training. J Biomed Inform. 2019; 96:103252.
https://doi.org/10.1016/j.jbi.2019.103252.
Article
44. Su J, Hu J, Jiang J, Xie J, Yang Y, He B, et al. Extraction of risk factors for cardiovascular diseases from Chinese electronic medical records. Comput Methods Programs Biomed. 2019; 172:1–10.
https://doi.org/10.1016/j.cmpb.2019.01.007.
Article
45. Li L, Zhao J, Hou L, Zhai Y, Shi J, Cui F.An attention-based deep learning model for clinical named entity recognition of Chinese electronic medical records. BMC Med Inform Decis Mak. 2019; 19(Suppl 5):235.
https://doi.org/10.1186/s12911-019-0933-6.
Article
46. Dong X, Chowdhury S, Qian L, Li X, Guan Y, Yang J, et al. Deep learning for named entity recognition on Chinese electronic medical records: Combining deep transfer learning with multitask bi-directional LSTM RNN. PLoS One. 2019; 14(5):e0216046.
https://doi.org/10.1371/journal.pone.0216046.
Article
47. Lin CH, Hsu KC, Liang CK, Lee TH, Liou CW, Lee JD, et al. A disease-specific language representation model for cerebrovascular disease research. Comput Methods Programs Biomed. 2021; 211:106446.
https://doi.org/10.1016/j.cmpb.2021.106446.
Article
48. Murugadoss K, Rajasekharan A, Malin B, Agarwal V, Bade S, Anderson JR, et al. Building a best-in-class automated de-identification tool for electronic health records through ensemble learning. Patterns (N Y). 2021; 2(6):100255.
https://doi.org/10.1016/j.patter.2021.100255.
Article
49. Harnoune A, Rhanoui M, Mikram M, Yousfi S, Elkaimbillah Z, El Asri B.BERT based clinical knowledge extraction for biomedical knowledge graph construction and analysis. Comput Methods Programs Biomed Update. 2021; 1:100042.
https://doi.org/10.1016/j.cmpbup.2021.100042.
Article
50. Narayanan S, Achan P, Rangan PV, Rajan SP.Unified concept and assertion detection using contextual multitask learning in a clinical decision support system. J Biomed Inform. 2021; 122:103898.
https://doi.org/10.1016/j.jbi.2021.103898.
Article
51. Thieu T, Maldonado JC, Ho PS, Ding M, Marr A, Brandt D, et al. A comprehensive study of mobility functioning information in clinical notes: entity hierarchy, corpus annotation, and sequence labeling. Int J Med Inform. 2021; 147:104351.
https://doi.org/10.1016/j.ijmedinf.2020.104351liu.
Article
55. Uronen L, Salantera S, Hakala K, Hartiala J, Moen H.Combining supervised and unsupervised named entity recognition to detect psychosocial risk factors in occupational health checks. Int J Med Inform. 2022; 160:104695.
https://doi.org/10.1016/j.ijmedinf.2022.104695.
Article
62. Narayanan S, Madhuri SS, Ramesh MV, Rangan PV, Rajan SP.Deep contextual multi-task feature fusion for enhanced concept, negation and speculation detection from clinical notes. Informatics Med Unlocked. 2022; 34:101109.
https://doi.org/10.1016/j.imu.2022.101109.
Article
64. Wang SY, Huang J, Hwang H, Hu W, Tao S, Hernandez-Boussard T.Leveraging weak supervision to perform named entity recognition in electronic health records progress notes to identify the ophthalmology exam. Int J Med Inform. 2022; 167:104864.
https://doi.org/10.1016/j.ijmedinf.2022.104864.
Article
65. Narayanan S, Mannam K, Achan P, Ramesh MV, Rangan PV, Rajan SP.A contextual multi-task neural approach to medication and adverse events identification from clinical text. J Biomed Inform. 2022; 125:103960.
https://doi.org/10.1016/j.jbi.2021.103960.
Article
66. El-Allaly ED, Sarrouti M, En-Nahnahi N, Ouatik El Alaoui S.An attentive joint model with transformer-based weighted graph convolutional network for extracting adverse drug event relation. J Biomed Inform. 2022; 125:103968.
https://doi.org/10.1016/j.jbi.2021.103968.
Article
68. Fang A, Hu J, Zhao W, Feng M, Fu J, Feng S, et al. Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records. BMC Med Inform Decis Mak. 2022; 22(1):72.
https://doi.org/10.1186/s12911-022-01810-z.
Article
69. Zhou S, Wang N, Wang L, Liu H, Zhang R.Cancer-BERT: a cancer domain-specific language model for extracting breast cancer phenotypes from electronic health records. J Am Med Inform Assoc. 2022; 29(7):1208–16.
https://doi.org/10.1093/jamia/ocac040.
Article
72. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. Adv Neural Inf Process Syst. 2017; 30:5999–6009.
73. Xu Y, Wang Y, Liu T, Liu J, Fan Y, Qian Y, et al. Joint segmentation and named entity recognition using dual decomposition in Chinese discharge summaries. J Am Med Inform Assoc. 2014; 21(e1):e84–92.
https://doi.org/10.1136/amiajnl-2013-001806.
Article
75. Peng Y, Yan S, Lu Z. Transfer learning in biomedical natural language processing: an evaluation of BERT and ELMo on ten benchmarking datasets [Internet]. Ithaca (NY): arXiv.org;2019. [cited at 2023 Sep 30]. Available from:
https://arxiv.org/abs/1906.05474.
76. Ji B, Li S, Yu J, Ma J, Tang J, Wu Q, et al. Research on Chinese medical named entity recognition based on collaborative cooperation of multiple neural network models. J Biomed Inform. 2020; 104:103395.
Article
79. Wei Q, Ji Z, Li Z, Du J, Wang J, Xu J, et al. A study of deep learning approaches for medication and adverse drug event extraction from clinical text. J Am Med Inform Assoc. 2020; 27(1):13–21.
https://doi.org/10.1093/jamia/ocz063.
Article
81. Lin WC, Chen JS, Kaluzny J, Chen A, Chiang MF, Hribar MR.Extraction of active medications and adherence using natural language processing for glaucoma patients. AMIA Annu Symp Proc. 2021; 2021:773–82.
82. Dai HJ.Family member information extraction via neural sequence labeling models with different tag schemes. BMC Med Inform Decis Mak. 2019; 19(Suppl 10):257.
Article
83. Chen L, Li Y, Chen W, Liu X, Yu Z, Zhang S.Utilizing soft constraints to enhance medical relation extraction from the history of present illness in electronic medical records. J Biomed Inform. 2018; 87:108–17.
Article
84. Dai HJ, Su CH, Wu CS.Adverse drug event and medication extraction in electronic health records via a cascading architecture with different sequence labeling models and word embeddings. J Am Med Inform Assoc. 2020; 27(1):47–55.
https://doi.org/10.1093/jamia/ocz120.
Article
85. Yang X, Bian J, Fang R, Bjarnadottir RI, Hogan WR, Wu Y.Identifying relations of medications with adverse drug events using recurrent convolutional neural networks and gradient boosting. J Am Med Inform Assoc. 2020; 27(1):65–72.
https://doi.org/10.1093/jamia/ocz144.
Article
90. Kochmar E, Andersen O, Briscoe T. HOO 2012 error recognition and correction shared task: Cambridge University submission report. In : Proceedings of the 7th Workshop on Innovative Use of NLP for Building Educational Applications; 2012 Jun 7; Montreal, Canada. p. 242–50.
https://doi.org/10.17863/CAM.9671.
Article
93. Wang C, Wang H, Zhuang H, Li W, Han S, Zhang H, et al. Chinese medical named entity recognition based on multi-granularity semantic dictionary and multimodal tree. J Biomed Inform. 2020; 111:103583.
https://doi.org/10.1016/j.jbi.2020.103583.
Article
94. Chen X, Ouyang C, Liu Y, Bu Y.Improving the named entity recognition of Chinese electronic medical records by combining domain dictionary and rules. Int J Environ Res Public Health. 2020; 17(8):2687.
https://doi.org/10.3390/ijerph17082687.
Article
95. Kersloot MG, Lau F, Abu-Hanna A, Arts DL, Cornet R.Automated SNOMED CT concept and attribute relationship detection through a web-based implementation of cTAKES. J Biomed Semantics. 2019; 10(1):14.
https://doi.org/10.1186/s13326-019-0207-3.
Article
96. Christopoulou F, Tran TT, Sahu SK, Miwa M, Ananiadou S.Adverse drug events and medication relation extraction in electronic health records with ensemble deep learning methods. J Am Med Inform Assoc. 2020; 27(1):39–46.
Article
97. Hu Y, Ameer I, Zuo W, Peng X, Zhou Y, Li Z, et al. Zeroshot clinical entity recognition using ChatGPT [Internet]. Ithaca (NY): arXiv.org;2023. [cited at 2023 Sep 30]. Available from:
https://arxiv.org/abs/2303.16416.
98. Li X, Zhu X, Ma Z, Liu X, Shas S. Are ChatGPT and GPT-4 general-purpose solvers for financial text analytics? An examination on several typical tasks [Internet]. Ithaca (NY): arXiv.org;2023. [cited at 2023 Sep 30]. Available from:
https://arxiv.org/abs/2305.05862.
99. Lai VD, Ngo NT, Veyseh AP, Man H, Dernoncourt F, Bui T, et al. ChatGPT beyond English: towards a comprehensive evaluation of large language models in multilingual learning [Internet]. Ithaca (NY): arXiv.org;2023. [cited at 2023 Sep 30]. Available from:
https://arxiv.org/abs/2304.05613.