Korean J Orthod.  2023 Sep;53(5):307-316. 10.4041/kjod23.076.

Effect of 125 Hz and 150 Hz vibrational frequency electric toothbrushes on the rate of orthodontic tooth movement and prostaglandin E2 levels

Affiliations
  • 1Department of Orthodontics, Sri Rajiv Gandhi College of Dental Sciences and Hospital, Bangalore, India
  • 2Department of Orthodontics, M S Ramaiah University of Applied Sciences, Bangalore, India

Abstract


Objective
To evaluate the effects of an electric toothbrush with vibrational frequencies of 125 Hz and 150 Hz on the orthodontic tooth movement (OTM) rate and the production of prostaglandin E2 (PGE2).
Methods
Out of thirty patients (aged 18–25 years; 16 females and 14 males), ten patients each formed Group A and B, who used electric toothbrushes with 125 Hz and 150 Hz vibrations, respectively. The remaining ten patients (Group C) served as the control group and did not use electric toothbrushes. The rate of OTM and levels of PGE2 using microcapillary pipettes were calculated before the start of retraction (T0), on the 30th day (T1), on the 60th day (T2), and on the 90th day (T3) from the start of retraction in all the groups.
Results
There was a statistically significant difference in the mean OTM values and PGE2 levels in all three groups at different time intervals, with the maximum difference seen in Group B compared to Group A and least in Group C at T1, T2 and T3.
Conclusions
The rate of OTM and levels of PGE2 were highest in patients who used an electric toothbrush with 150 Hz mechanical vibration compared to those who used an electric toothbrush with 125 Hz mechanical vibration and least in patients who did not use an electric toothbrush. Mechanical vibration led to an increase in the PGE2 levels and accelerated the OTM.

Keyword

Accelerated orthodontics; Mechanical vibration; Orthodontic tooth movement; Prostaglandin E2

Figure

  • Figure 1 Electric toothbrush producing mechanical vibration.

  • Figure 2 Fabrication of palatal plug.

  • Figure 3 Collection of gingival crevicular fluid sample using a microcapillary pipette.

  • Figure 4 Comparison of the mean rate of orthodontic tooth movement (mm) on the right side between 3 groups at different time intervals. The dot in the graph is the outlier, its a part of box plot graph. b/w, between; T0, retraction; T1, on the 30th day; T2, on the 60th day; T3, on the 90th day.

  • Figure 5 Comparison of the mean rate of orthodontic tooth movement (mm) on the left side between 3 groups at different time intervals. The dot in the graph is the outlier, its a part of box plot graph. b/w, between; T0, retraction; T1, on the 30th day; T2, on the 60th day; T3, on the 90th day.

  • Figure 6 Comparison of mean prostaglandin E2 (PGE2) levels (pg/mL) between 3 groups at different time intervals. T0, retraction; T1, on the 30th day; T2, on the 60th day; T3, on the 90th day.

  • Figure 7 Comparison of mean prostaglandin E2 (PGE2) levels (pg/mL) between different time intervals in each group. T0, retraction; T1, on the 30th day; T2, on the 60th day; T3, on the 90th day.


Reference

1. Piccioni MA, Campos EA, Saad JR, Andrade MF, Galvão MR, Rached AA. 2013; Application of the finite element method in dentistry. RSBO. 10:369–77. https://doi.org/10.21726/rsbo.v10i4.948. DOI: 10.21726/rsbo.v10i4.948.
Article
2. Sarmah A, Mathur AK, Gupta V, Pai VS, Nandini S. 2011; Finite element analysis of dental implant as orthodontic anchorage. J Contemp Dent Pract. 12:259–64. https://doi.org/10.5005/jp-journals-10024-1044. DOI: 10.5005/jp-journals-10024-1044. PMID: 22186860.
Article
3. Singh JR, Kambalyal P, Jain M, Khandelwal P. 2016; Revolution in orthodontics: finite element analysis. J Int Soc Prev Community Dent. 6:110–4. https://doi.org/10.4103/2231-0762.178743. DOI: 10.4103/2231-0762.178743. PMID: 27114948. PMCID: PMC4820568.
Article
4. Ansari TA, Mascarenhas R, Husain A, Salim M. 2011; Evaluation of the power arm in bringing about bodily movement using finite element analysis. Orthodontics (Chic. ). 12:318–29. https://pubmed.ncbi.nlm.nih.gov/22299105/. DOI: 10.1201/b15951-28.
5. Bica C, Brezeanu L, Bica D, Suciu M. 2015; Biomechanical reactions due to orthodontic forces. a finite element study. Procedia Technol. 19:895–900. https://doi.org/10.1016/j.protcy.2015.02.128. DOI: 10.1016/j.protcy.2015.02.128.
Article
6. Hamanaka R, Yamaoka S, Anh TN, Tominaga JY, Koga Y, Yoshida N. 2017; Numeric simulation model for long-term orthodontic tooth movement with contact boundary conditions using the finite element method. Am J Orthod Dentofacial Orthop. 152:601–12. https://doi.org/10.1016/j.ajodo.2017.03.021. DOI: 10.1016/j.ajodo.2017.03.021. PMID: 29103438.
Article
7. Takano-Yamamoto T, Sasaki K, Fatemeh G, Fukunaga T, Seiryu M, Daimaruya T, et al. 2017; Synergistic acceleration of experimental tooth movement by supplementary high-frequency vibration applied with a static force in rats. Sci Rep. 7:13969. https://doi.org/10.1038/s41598-017-13541-7. DOI: 10.1038/s41598-017-13541-7. PMID: 29070874. PMCID: PMC5656656.
Article
8. Klein DC, Raisz LG. 1970; Prostaglandins: stimulation of bone resorption in tissue culture. Endocrinology. 86:1436–40. https://doi.org/10.1210/endo-86-6-1436. DOI: 10.1210/endo-86-6-1436. PMID: 4315103.
Article
9. Alfaqeeh SA, Anil S. 2014; Gingival crevicular fluid flow rate and alkaline phosphatase level as potential marker of active tooth movement. Oral Health Dent Manag. 13:458–63. https://pubmed.ncbi.nlm.nih.gov/24984665/.
10. Almeida RC, Capelli J Jr, Teles RP. 2015; Levels of gingival crevicular fluid matrix metalloproteinases in periodontally compromised teeth under orthodontic forces. Angle Orthod. 85:1009–14. https://doi.org/10.2319/101714-744.1. DOI: 10.2319/101714-744.1. PMID: 25751014. PMCID: PMC8612058.
Article
11. Collins DA, Chambers TJ. 1992; Prostaglandin E2 promotes osteoclast formation in murine hematopoietic cultures through an action on hematopoietic cells. J Bone Miner Res. 7:555–61. https://doi.org/10.1002/jbmr.5650070512. DOI: 10.1002/jbmr.5650070512. PMID: 1615762.
Article
12. Chaudhari VC, Suchita MT. 2015; Comparison of rate of retraction and anchorage loss using nickel titanium closed coil springs and elastomeric chain during the en-masse retraction: a clinical study. J Orthod Res. 3:129–33. https://doi.org/10.4103/2321-3825.150582. DOI: 10.4103/2321-3825.150582.
Article
13. Suamphan S. 2010. Change in rate of orthodontic tooth movement and interleukin-1 beta level in gingival crevicular fluid in response to mechanical vibratory stimulation from electrical toothbrush [Master's Thesis]. Prince of Songkla University;Songkhla: http://kb.psu.ac.th:8080/psukb/bitstream/2010/8860/1/345954.pdf.
14. Limpanichkul W, Godfrey K, Srisuk N, Rattanayatikul C. 2006; Effects of low-level laser therapy on the rate of orthodontic tooth movement. Orthod Craniofac Res. 9:38–43. https://doi.org/10.1111/j.1601-6343.2006.00338.x. DOI: 10.1111/j.1601-6343.2006.00338.x. PMID: 16420273.
Article
15. Fenol A, Sasidharan RK, Krishnan S. 2014; Levels of interleukin-10 in gingival crevicular fluid and its role in the initiation and progression of gingivitis to periodontitis. J Oral Hyg Health. 2:135. https://doi.org/10.4172/2332-0702.1000135. DOI: 10.4172/2332-0702.1000135.
Article
16. Jamesha FI, Maradi AP, Chithresan K, Janakiram S, Maddur PK, Rangaraju R. 2018; Comparison of gingival crevicular fluid periostin levels in healthy, chronic periodontitis, and aggressive periodontitis. J Indian Soc Periodontol. 22:480–6. https://doi.org/10.4103/jisp.jisp_266_18. DOI: 10.4103/jisp.jisp_266_18. PMID: 30631225. PMCID: PMC6305088.
Article
17. Gujar AN, Baeshen HA, Alhazmi A, Bhandi S, Raj AT, Patil S, et al. 2019; Cytokine levels in gingival crevicular fluid during orthodontic treatment with aligners compared to conventional labial fixed appliances: a 3-week clinical study. Acta Odontol Scand. 77:474–81. https://doi.org/10.1080/00016357.2019.1607548. DOI: 10.1080/00016357.2019.1607548. PMID: 31027423.
Article
18. Nishimura M, Chiba M, Ohashi T, Sato M, Shimizu Y, Igarashi K, et al. 2008; Periodontal tissue activation by vibration: intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats. Am J Orthod Dentofacial Orthop. 133:572–83. https://doi.org/10.1016/j.ajodo.2006.01.046. DOI: 10.1016/j.ajodo.2006.01.046. PMID: 18405822.
Article
19. Yadav S, Dobie T, Assefnia A, Gupta H, Kalajzic Z, Nanda R. 2015; Effect of low-frequency mechanical vibration on orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 148:440–9. https://doi.org/10.1016/j.ajodo.2015.03.031. DOI: 10.1016/j.ajodo.2015.03.031. PMID: 26321342.
Article
20. Gujar AN, Shivamurthy PG, Sabrish S. 2021; Effect of 125-150 Hz vibrational frequency electric toothbrush on teeth and supporting structures: a finite element method study. J Contemp Dent Pract. 22:1150–9. https://doi.org/10.5005/jp-journals-10024-3202. DOI: 10.5005/jp-journals-10024-3202.
Article
21. Slot DE, Wiggelinkhuizen L, Rosema NA, Van der Weijden GA. 2012; The efficacy of manual toothbrushes following a brushing exercise: a systematic review. Int J Dent Hyg. 10:187–97. https://doi.org/10.1111/j.1601-5037.2012.00557.x. DOI: 10.1111/j.1601-5037.2012.00557.x. PMID: 22672101.
Article
22. Bahammam S, Chen CY, Ishida Y, Hayashi A, Ikeda Y, Ishii H, et al. 2021; Electric and manual oral hygiene routines affect plaque index score differently. Int J Environ Res Public Health. 18:13123. https://doi.org/10.3390/ijerph182413123. DOI: 10.3390/ijerph182413123. PMID: 34948732. PMCID: PMC8701503.
Article
23. Raisz LG. 1999; Prostaglandins and bone: physiology and pathophysiology. Osteoarthritis Cartilage. 7:419–21. https://doi.org/10.1053/joca.1998.0230. DOI: 10.1053/joca.1998.0230. PMID: 10419786.
Article
24. Bowman SJ. 2014; The effect of vibration on the rate of leveling and alignment. J Clin Orthod. 48:678–88. https://pubmed.ncbi.nlm.nih.gov/25707947/.
25. Kau CH, Nguyen JT, English JD. 2010; The clinical evaluation of a novel cyclical force generating device in orthodontics. Orthod Pract US. 1:10–5. https://cdn.vivarep.com/contrib/va/documents/al_lib_66.2013103193933523.pdf.
26. Kau CH. 2011; A radiographic analysis of tooth morphology following the use of a novel cyclical force device in orthodontics. Head Face Med. 7:14. https://doi.org/10.1186/1746-160X-7-14. DOI: 10.1186/1746-160X-7-14. PMID: 21827655. PMCID: PMC3162905. PMID: 1475646d1c5e4b348c245bfaa140d2f4.
Article
27. Drummond S, Canavarro C, Perinetti G, Teles R, Capelli J Jr. 2012; The monitoring of gingival crevicular fluid volume during orthodontic treatment: a longitudinal randomized split-mouth study. Eur J Orthod. 34:109–13. https://doi.org/10.1093/ejo/cjq172. DOI: 10.1093/ejo/cjq172. PMID: 21273285.
Article
28. Alikhani M, Khoo E, Alyami B, Raptis M, Salgueiro JM, Oliveira SM, et al. 2012; Osteogenic effect of high-frequency acceleration on alveolar bone. J Dent Res. 91:413–9. https://doi.org/10.1177/0022034512438590. DOI: 10.1177/0022034512438590. PMID: 22337699. PMCID: PMC3310758.
Article
29. Dinarello CA. 1988; Biology of interleukin 1. FASEB J. 2:108–15. https://doi.org/10.1096/fasebj.2.2.3277884. DOI: 10.1096/fasebj.2.2.3277884. PMID: 3277884.
Article
30. Raisz LG, Sandberg AL, Goodson JM, Simmons HA, Mergenhagen SE. 1974; Complement-dependent stimulation of prostaglandin synthesis and bone resorption. Science. 185:789–91. https://doi.org/10.1126/science.185.4153.789. DOI: 10.1126/science.185.4153.789. PMID: 4843377.
Article
31. Dowsett M, Eastman AR, Easty DM, Easty GC, Powles TJ, Neville AM. 1976; Prostaglandin mediation of collagenase-induced bone resorption. Nature. 263:72–4. https://doi.org/10.1038/263072a0. DOI: 10.1038/263072a0. PMID: 183146.
Article
32. Leiker BJ, Nanda RS, Currier GF, Howes RI, Sinha PK. 1995; The effects of exogenous prostaglandins on orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop. 108:380–8. https://doi.org/10.1016/s0889-5406(95)70035-8. DOI: 10.1016/S0889-5406(95)70035-8. PMID: 7572849.
Article
33. Yamasaki K, Miura F, Suda T. 1980; Prostaglandin as a mediator of bone resorption induced by experimental tooth movement in rats. J Dent Res. 59:1635–42. https://doi.org/10.1177/00220345800590101301. DOI: 10.1177/00220345800590101301. PMID: 6932420.
Article
34. Davidovitch Z, Nicolay OF, Ngan PW, Shanfeld JL. 1988; Neurotransmitters, cytokines, and the control of alveolar bone remodeling in orthodontics. Dent Clin North Am. 32:411–35. https://doi.org/10.1016/S0011-8532(22)00320-2. DOI: 10.1016/S0011-8532(22)00320-2. PMID: 2900159.
Article
35. Yamasaki K. 1983; The role of cyclic AMP, calcium, and prostaglandins in the induction of osteoclastic bone resorption associated with experimental tooth movement. J Dent Res. 62:877–81. https://doi.org/10.1177/00220345830620080501. DOI: 10.1177/00220345830620080501. PMID: 6306082.
Article
36. Benjakul S, Jitpukdeebodintra S, Leethanakul C. 2018; Effects of low magnitude high frequency mechanical vibration combined with compressive force on human periodontal ligament cells in vitro. Eur J Orthod. 40:356–63. https://doi.org/10.1093/ejo/cjx062. DOI: 10.1093/ejo/cjx062. PMID: 29016746.
Article
37. Leethanakul C, Suamphan S, Jitpukdeebodintra S, Thongudomporn U, Charoemratrote C. 2016; Vibratory stimulation increases interleukin-1 beta secretion during orthodontic tooth movement. Angle Orthod. 86:74–80. https://doi.org/10.2319/111914-830.1. DOI: 10.2319/111914-830.1. PMID: 25811245. PMCID: PMC8603964.
Article
38. Zhang C, Li J, Zhang L, Zhou Y, Hou W, Quan H, et al. 2012; Effects of mechanical vibration on proliferation and osteogenic differentiation of human periodontal ligament stem cells. Arch Oral Biol. 57:1395–407. https://doi.org/10.1016/j.archoralbio.2012.04.010. DOI: 10.1016/j.archoralbio.2012.04.010. PMID: 22595622.
Article
39. Fukushima H, Jimi E, Okamoto F, Motokawa W, Okabe K. 2005; IL-1-induced receptor activator of NF-kappa B ligand in human periodontal ligament cells involves ERK-dependent PGE2 production. Bone. 36:267–75. https://doi.org/10.1016/j.bone.2004.09.011. DOI: 10.1016/j.bone.2004.09.011. PMID: 15780952.
Article
40. Krishnan V, Davidovitch Z. 2006; Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop. 129:469.e1–32. https://doi.org/10.1016/j.ajodo.2005.10.007. DOI: 10.1016/j.ajodo.2005.10.007. PMID: 16627171.
Article
41. Römer P, Köstler J, Koretsi V, Proff P. 2013; Endotoxins potentiate COX-2 and RANKL expression in compressed PDL cells. Clin Oral Investig. 17:2041–8. https://doi.org/10.1007/s00784-013-0928-0. DOI: 10.1007/s00784-013-0928-0. PMID: 23392729.
Article
42. Nettelhoff L, Grimm S, Jacobs C, Walter C, Pabst AM, Goldschmitt J, et al. 2016; Influence of mechanical compression on human periodontal ligament fibroblasts and osteoblasts. Clin Oral Investig. 20:621–9. https://doi.org/10.1007/s00784-015-1542-0. DOI: 10.1007/s00784-015-1542-0. PMID: 26243456.
Article
43. Marie PJ. 2008; Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys. 473:98–105. https://doi.org/10.1016/j.abb.2008.02.030. DOI: 10.1016/j.abb.2008.02.030. PMID: 18331818.
Article
44. Chen D, Kim S, Lee S, Lee JM, Choi YJ, Shin SJ, et al. 2021; The effect of mechanical vibration on osteogenesis of periodontal ligament stem cells. J Endod. 47:1767–74. https://doi.org/10.1016/j.joen.2021.08.014. DOI: 10.1016/j.joen.2021.08.014. PMID: 34492230.
45. Yamasaki K, Shibata Y, Imai S, Tani Y, Shibasaki Y, Fukuhara T. 1984; Clinical application of prostaglandin E1 (PGE1) upon orthodontic tooth movement. Am J Orthod. 85:508–18. https://doi.org/10.1016/0002-9416(84)90091-5. DOI: 10.1016/0002-9416(84)90091-5. PMID: 6587784.
46. Cağlaroğlu M, Erdem A. 2012; Histopathologic investigation of the effects of prostaglandin E2 administered by different methods on tooth movement and bone metabolism. Korean J Orthod. 42:118–28. https://doi.org/10.4041/kjod.2012.42.3.118. DOI: 10.4041/kjod.2012.42.3.118. PMID: 23112942. PMCID: PMC3481982.
47. Seifi M, Eslami B, Saffar AS. 2003; The effect of prostaglandin E2 and calcium gluconate on orthodontic tooth movement and root resorption in rats. Eur J Orthod. 25:199–204. https://doi.org/10.1093/ejo/25.2.199. DOI: 10.1093/ejo/25.2.199. PMID: 12737218.
48. Valiathan A, Dhar S. 2006; Prostaglandins and enhanced orthodontic tooth movement: in search of the silver bullet. Curr Sci. 90:311–3. https://www.jstor.org/stable/24091864.
49. Reitan K. 1967; Clinical and histologic observations on tooth movement during and after orthodontic treatment. Am J Orthod. 53:721–45. https://doi.org/10.1016/0002-9416(67)90118-2. DOI: 10.1016/0002-9416(67)90118-2. PMID: 5233926.
Article
50. Yang RS, Fu WM, Wang SM, Lu KS, Liu TK, Lin-Shiau SY. 1998; Morphological changes induced by prostaglandin E in cultured rat osteoblasts. Bone. 22:629–36. https://doi.org/10.1016/s8756-3282(98)00055-6. DOI: 10.1016/S8756-3282(98)00055-6. PMID: 9626401.
Article
Full Text Links
  • KJOD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr