1. Boyd WC. Fundamentals of immunology. 2nd ed. Interscience Publishers;1947.
2. Brockhaus M. Immunological research methods. Academic Press;1988. p. 160–2.
3. Delevsky YP, Gavrilova LV, Khavkina LV. 1980; Indicators of cellular immunity in its organ-specific manifestations in spinal osteochondrosis. Modern methods of treatment of degenerative-destructive diseases. Medicine. 1:S108111.
4. Delevskiĭ IP. Study of the nature of A1- and A2-antigenic differences with use of monoclonal antibodies: a role of glycoprotein and glycolipid epitopes in their formation. Klin Lab Diagn. 2006; (10):6–11. PMID:
17144537.
5. Proceedings of the Fourth International Workshop on Monoclonal Antibodies Against Human Red Blood Cell and Related Antigens. Under the Aegis of the Institut National de la Transfusion Saguine and of the Etablissement Francais du Sang. July 19-20. Paris, France. Transfus Clin Biol. 2002; 9:1–108. PMID:
11958157.
6. Conrath TB. Handbook of microtiter procedures. Dynatech Corp;1972.
7. Dausset J. 1953; Immunohematology of platelets and leukocytes. Presse Med (1893). 61:1533–5. PMID:
13134017.
8. Delevskiĭ IP, Zinchenko AA. Comparison of the antigenic spectrum A1, A2, and Ax erythrocytes: inhibition of mab with glucoconjugates of lipid and protein nature with different isoelectric properties. Klin Lab Diagn. 2007; (12):48–53. PMID:
18225514.
10. Sinha N, Mohan S, Lipschultz CA, Smith-Gill SJ. 2002; Differences in electrostatic properties at antibody-antigen binding sites: implications for specificity and cross-reactivity. Biophys J. 83:2946–68. DOI:
10.1016/S0006-3495(02)75302-2. PMID:
12496069. PMCID:
PMC1302377.
11. Sinha N, Li Y, Lipschultz CA, Smith-Gill SJ. 2007; Understanding antibody-antigen associations by molecular dynamics simulations: detection of important intra-and inter-molecular salt bridges. Cell Biochem Biophys. 47:361–75. DOI:
10.1007/s12013-007-0031-8. PMID:
17652781.
13. Yoshida K, Kuroda D, Kiyoshi M, Nakakido M, Nagatoishi S, Soga S, et al. 2019; Exploring designability of electrostatic complementarity at an antigen-antibody interface directed by mutagenesis, biophysical analysis, and molecular dynamics simulations. Sci Rep. 9:4482. DOI:
10.1038/s41598-019-40461-5. PMID:
30872635. PMCID:
PMC6418251.
14. Gupta P, Makowski EK, Kumar S, Zhang Y, Scheer JM, Tessier PM. 2022; Antibodies with weakly basic isoelectric points minimize trade-offs between formulation and physiological colloidal properties. Mol Pharm. 19:775–87. DOI:
10.1021/acs.molpharmaceut.1c00373. PMID:
35108018. PMCID:
PMC9350878.
16. Raut AS, Kalonia DS. 2015; Opalescence in monoclonal antibody solutions and its correlation with intermolecular interactions in dilute and concentrated solutions. J Pharm Sci. 104:1263–74. DOI:
10.1002/jps.24326. PMID:
25556561.
17. Neergaard MS, Kalonia DS, Parshad H, Nielsen AD, Møller EH, van de Weert M. 2013; Viscosity of high concentration protein formulations of monoclonal antibodies of the IgG1 and IgG4 subclass - prediction of viscosity through protein-protein interaction measurements. Eur J Pharm Sci. 49:400–10. DOI:
10.1016/j.ejps.2013.04.019. PMID:
23624326.
19. Liu S, Shah DK. 2023; Physiologically based pharmacokinetic modeling to characterize the effect of molecular charge on whole-body disposition of monoclonal antibodies. AAPS J. 25:48. DOI:
10.1208/s12248-023-00812-7. PMID:
37118220.
20. Emoto K, Yamashita S, Okada Y. 2005; Mechanisms of heat-induced antigen retrieval: does pH or ionic strength of the solution play a role for refolding antigens? J Histochem Cytochem. 53:1311–21. DOI:
10.1369/jhc.5C6627.2005. PMID:
16009962.