1. Pollock A, Hazelton C, Rowe FJ, Jonuscheit S, Kernohan A, Angilley J, et al. Interventions for visual field defects in people with stroke. Cochrane Database Syst Rev. 2019; 5:CD008388.
2. Bergsma DP, van der Wildt G. Visual training of cerebral blindness patients gradually enlarges the visual field. Br J Ophthalmol. 2010; 94:88–96.
3. Raninen A, Vanni S, Hyvärinen L, Näsänen R. Temporal sensitivity in a hemianopic visual field can be improved by long-term training using flicker stimulation. J Neurol Neurosurg Psychiatry. 2007; 78:66–73.
4. Sahraie A, Trevethan CT, MacLeod MJ, Murray AD, Olson JA, Weiskrantz L. Increased sensitivity after repeated stimulation of residual spatial channels in blindsight. Proc Natl Acad Sci U S A. 2006; 103:14971–14976.
5. Cavanaugh MR, Blanchard LM, McDermott M, Lam BL, Tamhankar M, Feldon SE. Efficacy of visual retraining in the hemianopic field after stroke: results of a randomized clinical trial. Ophthalmology. 2021; 128:1091–1101.
6. Kim YH, Kang DW, Kim D, Kim HJ, Sasaki Y, Watanabe T. Real-time strategy video game experience and visual perceptual learning. J Neurosci. 2015; 35:10485–10492.
7. Yotsumoto Y, Watanabe T, Sasaki Y. Different dynamics of performance and brain activation in the time course of perceptual learning. Neuron. 2008; 57:827–833.
8. Cavanaugh MR, Huxlin KR. Visual discrimination training improves Humphrey perimetry in chronic cortically induced blindness. Neurology. 2017; 88:1856–1864.
9. Leske MC, Heijl A, Hyman L, Bengtsson B. Early Manifest Glaucoma Trial: design and baseline data. Ophthalmology. 1999; 106:2144–2153.
10. Bonkhoff AK, Grefkes C. Precision medicine in stroke: towards personalized outcome predictions using artificial intelligence. Brain. 2022; 145:457–475.