1. Generali E, Bose T, Selmi C, Voncken JW, Damoiseaux JGMC. 2018; Nature versus nurture in the spectrum of rheumatic diseases: classification of spondyloarthritis as autoimmune or autoinflammatory. Autoimmun Rev. 17:935–41. DOI:
10.1016/j.autrev.2018.04.002. PMID:
30005857.
Article
2. Mauro D, Thomas R, Guggino G, Lories R, Brown MA, Ciccia F. 2021; Ankylosing spondylitis: an autoimmune or autoinflammatory disease? Nat Rev Rheumatol. 17:387–404. DOI:
10.1038/s41584-021-00625-y. PMID:
34113018.
Article
4. Schett G, Lories RJ, D'Agostino MA, Elewaut D, Kirkham B, Soriano ER, et al. 2017; Enthesitis: from pathophysiology to treatment. Nat Rev Rheumatol. 13:731–41. DOI:
10.1038/nrrheum.2017.188. PMID:
29158573.
Article
5. Baraliakos X, Heldmann F, Callhoff J, Listing J, Appelboom T, Brandt J, et al. 2014; Which spinal lesions are associated with new bone formation in patients with ankylosing spondylitis treated with anti-TNF agents? A long-term observational study using MRI and conventional radiography. Ann Rheum Dis. 73:1819–25. DOI:
10.1136/annrheumdis-2013-203425. PMID:
23852807.
Article
6. Machado PM, Baraliakos X, van der Heijde D, Braun J, Landewé R. 2016; MRI vertebral corner inflammation followed by fat deposition is the strongest contributor to the development of new bone at the same vertebral corner: a multilevel longitudinal analysis in patients with ankylosing spondylitis. Ann Rheum Dis. 75:1486–93. DOI:
10.1136/annrheumdis-2015-208011. PMID:
26462728.
Article
7. El-Zayadi AA, Jones EA, Churchman SM, Baboolal TG, Cuthbert RJ, El-Jawhari JJ, et al. 2017; Interleukin-22 drives the proliferation, migration and osteogenic differentiation of mesenchymal stem cells: a novel cytokine that could contribute to new bone formation in spondyloarthropathies. Rheumatology (Oxford). 56:488–93. DOI:
10.1093/rheumatology/kew384. PMID:
27940584.
Article
11. Ewing C, Ebringer R, Tribbick G, Geysen HM. 1990; Antibody activity in ankylosing spondylitis sera to two sites on HLA B27.1 at the MHC groove region (within sequence 65-85), and to a Klebsiella pneumoniae nitrogenase reductase peptide (within sequence 181-199). J Exp Med. 171:1635–47. DOI:
10.1084/jem.171.5.1635. PMID:
2185331. PMCID:
PMC2187896.
Article
12. Goodall JC, Wu C, Zhang Y, McNeill L, Ellis L, Saudek V, et al. 2010; Endoplasmic reticulum stress-induced transcription factor, CHOP, is crucial for dendritic cell IL-23 expression. Proc Natl Acad Sci U S A. 107:17698–703. DOI:
10.1073/pnas.1011736107. PMID:
20876114. PMCID:
PMC2955096.
Article
13. Long F, Wang T, Li Q, Xiong Y, Zeng Y. 2022; Association between Klebsiella pneumoniae and ankylosing spondylitis: a systematic review and meta-analysis. Int J Rheum Dis. 25:422–32. DOI:
10.1111/1756-185X.14283. PMID:
35019225.
14. Schwimmbeck PL, Oldstone MB. 1988; Molecular mimicry between human leukocyte antigen B27 and Klebsiella. Consequences for spondyloarthropathies. Am J Med. 85(6A):51–3. DOI:
10.1016/0002-9343(88)90385-3. PMID:
2462350.
15. Asquith M, Sternes PR, Costello ME, Karstens L, Diamond S, Martin TM, et al. 2019; HLA alleles associated with risk of ankylosing spondylitis and rheumatoid arthritis influence the gut microbiome. Arthritis Rheumatol. 71:1642–50. DOI:
10.1002/art.40917. PMID:
31038287.
Article
16. Costello ME, Ciccia F, Willner D, Warrington N, Robinson PC, Gardiner B, et al. 2015; Brief report: intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheumatol. 67:686–91. DOI:
10.1002/art.38967. PMID:
25417597.
Article
17. Tito RY, Cypers H, Joossens M, Varkas G, Van Praet L, Glorieus E, et al. 2017; Brief report: Dialister as a microbial marker of disease activity in spondyloarthritis. Arthritis Rheumatol. 69:114–21. DOI:
10.1002/art.39802. PMID:
27390077.
18. Breban M, Tap J, Leboime A, Said-Nahal R, Langella P, Chiocchia G, et al. 2017; Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. Ann Rheum Dis. 76:1614–22. DOI:
10.1136/annrheumdis-2016-211064. PMID:
28606969.
Article
19. Zhou C, Zhao H, Xiao XY, Chen BD, Guo RJ, Wang Q, et al. 2020; Metagenomic profiling of the pro-inflammatory gut microbiota in ankylosing spondylitis. J Autoimmun. 107:102360. DOI:
10.1016/j.jaut.2019.102360. PMID:
31806420.
Article
20. Berland M, Meslier V, Berreira Ibraim S, Le Chatelier E, Pons N, Maziers N, et al. 2023; Both disease activity and HLA-B27 status are associated with gut microbiome dysbiosis in spondyloarthritis patients. Arthritis Rheumatol. 75:41–52. DOI:
10.1002/art.42289. PMID:
35818337. PMCID:
PMC10099252.
Article
21. Guggino G, Mauro D, Rizzo A, Alessandro R, Raimondo S, Bergot AS, et al. 2021; Inflammasome activation in ankylosing spondylitis is associated with gut dysbiosis. Arthritis Rheumatol. 73:1189–99. DOI:
10.1002/art.41644. PMID:
33452867.
Article
22. Qaiyum Z, Gracey E, Yao Y, Inman RD. 2019; Integrin and transcriptomic profiles identify a distinctive synovial CD8+ T cell subpopulation in spondyloarthritis. Ann Rheum Dis. 78:1566–75. DOI:
10.1136/annrheumdis-2019-215349. PMID:
31471299.
Article
23. Strauch UG, Mueller RC, Li XY, Cernadas M, Higgins JM, Binion DG, et al. 2001; Integrin alpha E(CD103)beta 7 mediates adhesion to intestinal microvascular endothelial cell lines via an E-cadherin-independent interaction. J Immunol. 166:3506–14. DOI:
10.4049/jimmunol.166.5.3506. PMID:
11207310.
24. Purwar R, Campbell J, Murphy G, Richards WG, Clark RA, Kupper TS. 2011; Resident memory T cells (T(RM)) are abundant in human lung: diversity, function, and antigen specificity. PLoS One. 6:e16245. DOI:
10.1371/journal.pone.0016245. PMID:
21298112. PMCID:
PMC3027667.
Article
25. Berlinberg AJ, Regner EH, Stahly A, Brar A, Reisz JA, Gerich ME, et al. 2021; Multi 'omics analysis of intestinal tissue in ankylosing spondylitis identifies alterations in the tryptophan metabolism pathway. Front Immunol. 12:587119. DOI:
10.3389/fimmu.2021.587119. PMID:
33746944. PMCID:
PMC7966505.
Article
26. Wei JC, Chou MC, Huang JY, Chang R, Hung YM. 2020; The association between
Candida infection and ankylosing spondylitis: a population-based matched cohort study. Curr Med Res Opin. 36:2063–9. DOI:
10.1080/03007995.2020.1838460. PMID:
33066709.
27. Wei CY, Lin JY, Wang YT, Huang JY, Wei JC, Chiou JY. 2020; Risk of ankylosing spondylitis following human papillomavirus infection: a nationwide, population-based, cohort study. J Autoimmun. 113:102482. DOI:
10.1016/j.jaut.2020.102482. PMID:
32417193.
Article
28. Segal Y, Calabrò M, Kanduc D, Shoenfeld Y. 2017; Human papilloma virus and lupus: the virus, the vaccine and the disease. Curr Opin Rheumatol. 29:331–42. DOI:
10.1097/BOR.0000000000000398. PMID:
28394823.
Article
29. Damba JJ, Laskine M, Jin Y, Sinyavskaya L, Durand M. 2021; Incidence of autoimmune diseases in people living with HIV compared to a matched population: a cohort study. Clin Rheumatol. 40:2439–45. DOI:
10.1007/s10067-020-05500-x. PMID:
33230683.
Article
30. Guiliano DB, North H, Panayoitou E, Campbell EC, McHugh K, Cooke FG, et al. 2017; Polymorphisms in the F pocket of HLA-B27 subtypes strongly affect assembly, chaperone interactions, and heavy-chain misfolding. Arthritis Rheumatol. 69:610–21. DOI:
10.1002/art.39948. PMID:
27723268.
Article
31. Wang G, Kim TH, Li Z, Cortes A, Kim K, Bang SY, et al. 2020; MHC associations of ankylosing spondylitis in East Asians are complex and involve non-HLA-B27 HLA contributions. Arthritis Res Ther. 22:74. DOI:
10.1186/s13075-020-02148-5. PMID:
32272966. PMCID:
PMC7146985.
Article
34. York IA, Chang SC, Saric T, Keys JA, Favreau JM, Goldberg AL, et al. 2002; The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8-9 residues. Nat Immunol. 3:1177–84. DOI:
10.1038/ni860. PMID:
12436110.
Article
35. Tsui FW, Haroon N, Reveille JD, Rahman P, Chiu B, Tsui HW, et al. 2010; Association of an ERAP1 ERAP2 haplotype with familial ankylosing spondylitis. Ann Rheum Dis. 69:733–6. DOI:
10.1136/ard.2008.103804. PMID:
19433412.
Article
36. Nakamura A, Boroojeni SF, Haroon N. 2021; Aberrant antigen processing and presentation: key pathogenic factors leading to immune activation in Ankylosing spondylitis. Semin Immunopathol. 43:245–53. DOI:
10.1007/s00281-020-00833-w. PMID:
33532928.
Article
37. Evans DM, Spencer CC, Pointon JJ, Su Z, Harvey D, Kochan G, et al. 2011; Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat Genet. 43:761–7. Erratum in: Nat Genet 2011;43:919. DOI:
10.1038/ng0911-919a. PMID:
21743469. PMCID:
PMC3640413.
38. Wei JC, Tsai WC, Lin HS, Tsai CY, Chou CT. 2004; HLA-B60 and B61 are strongly associated with ankylosing spondylitis in HLA-B27-negative Taiwan Chinese patients. Rheumatology (Oxford). 43:839–42. DOI:
10.1093/rheumatology/keh193. PMID:
15113995.
Article
39. Robinson PC, Costello ME, Leo P, Bradbury LA, Hollis K, Cortes A, et al. 2015; ERAP2 is associated with ankylosing spondylitis in HLA-B27-positive and HLA-B27-negative patients. Ann Rheum Dis. 74:1627–9. DOI:
10.1136/annrheumdis-2015-207416. PMID:
25917849. PMCID:
PMC4498996.
40. Saveanu L, Carroll O, Lindo V, Del Val M, Lopez D, Lepelletier Y, et al. 2005; Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat Immunol. 6:689–97. DOI:
10.1038/ni1208. PMID:
15908954.
Article
41. Martín-Esteban A, Sanz-Bravo A, Guasp P, Barnea E, Admon A, López de Castro JA. 2017; Separate effects of the ankylosing spondylitis associated ERAP1 and ERAP2 aminopeptidases determine the influence of their combined phenotype on the HLA-B*27 peptidome. J Autoimmun. 79:28–38. DOI:
10.1016/j.jaut.2016.12.008. PMID:
28063628.
Article
42. Hanson AL, Cuddihy T, Haynes K, Loo D, Morton CJ, Oppermann U, et al. 2018; Genetic variants in ERAP1 and ERAP2 associated with immune-mediated diseases influence protein expression and the isoform profile. Arthritis Rheumatol. 70:255–65. DOI:
10.1002/art.40369. PMID:
29108111.
43. Gracey E, Burssens A, Cambré I, Schett G, Lories R, McInnes IB, et al. 2020; Tendon and ligament mechanical loading in the pathogenesis of inflammatory arthritis. Nat Rev Rheumatol. 16:193–207. DOI:
10.1038/s41584-019-0364-x. PMID:
32080619. PMCID:
PMC7815340.
Article
44. Lavagnino M, Wall ME, Little D, Banes AJ, Guilak F, Arnoczky SP. 2015; Tendon mechanobiology: current knowledge and future research opportunities. J Orthop Res. 33:813–22. DOI:
10.1002/jor.22871. PMID:
25763779. PMCID:
PMC4524513.
48. Zhang K, Asai S, Yu B, Enomoto-Iwamoto M. 2015; IL-1β irreversibly inhibits tenogenic differentiation and alters metabolism in injured tendon-derived progenitor cells in vitro. Biochem Biophys Res Commun. 463:667–72. DOI:
10.1016/j.bbrc.2015.05.122. PMID:
26051275. PMCID:
PMC4496264.
49. Tsuzaki M, Guyton G, Garrett W, Archambault JM, Herzog W, Almekinders L, et al. 2003; IL-1 beta induces COX2, MMP-1, -3 and -13, ADAMTS-4, IL-1 beta and IL-6 in human tendon cells. J Orthop Res. 21:256–64. DOI:
10.1016/S0736-0266(02)00141-9. PMID:
12568957.
50. Bridgewood C, Watad A, Russell T, Palmer TM, Marzo-Ortega H, Khan A, et al. 2019; Identification of myeloid cells in the human enthesis as the main source of local IL-23 production. Ann Rheum Dis. 78:929–33. DOI:
10.1136/annrheumdis-2018-214944. PMID:
31018959. PMCID:
PMC6585277.
Article
51. Cuthbert RJ, Watad A, Fragkakis EM, Dunsmuir R, Loughenbury P, Khan A, et al. 2019; Evidence that tissue resident human enthesis γδT-cells can produce IL-17A independently of IL-23R transcript expression. Ann Rheum Dis. 78:1559–65. DOI:
10.1136/annrheumdis-2019-215210. PMID:
31530557. PMCID:
PMC6837256.
Article
52. van Tok MN, Na S, Lao CR, Alvi M, Pots D, van de Sande MGH, et al. 2018; The initiation, but not the persistence, of experimental spondyloarthritis is dependent on interleukin-23 signaling. Front Immunol. 9:1550. DOI:
10.3389/fimmu.2018.01550. PMID:
30038617. PMCID:
PMC6046377.
Article
54. Hamada S, Umemura M, Shiono T, Tanaka K, Yahagi A, Begum MD, et al. 2008; IL-17A produced by gammadelta T cells plays a critical role in innate immunity against listeria monocytogenes infection in the liver. J Immunol. 181:3456–63. DOI:
10.4049/jimmunol.181.5.3456. PMID:
18714018. PMCID:
PMC2859669.
55. Wang X, Lin Z, Wei Q, Jiang Y, Gu J. 2009; Expression of IL-23 and IL-17 and effect of IL-23 on IL-17 production in ankylosing spondylitis. Rheumatol Int. 29:1343–7. DOI:
10.1007/s00296-009-0883-x. PMID:
19247658.
Article
56. Mei Y, Pan F, Gao J, Ge R, Duan Z, Zeng Z, et al. 2011; Increased serum IL-17 and IL-23 in the patient with ankylosing spondylitis. Clin Rheumatol. 30:269–73. DOI:
10.1007/s10067-010-1647-4. PMID:
21161669.
Article
57. Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL. 2003; Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem. 278:1910–4. DOI:
10.1074/jbc.M207577200. PMID:
12417590.
Article
58. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. 2000; Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 13:715–25. DOI:
10.1016/S1074-7613(00)00070-4. PMID:
11114383.
Article
59. Ciccia F, Bombardieri M, Principato A, Giardina A, Tripodo C, Porcasi R, et al. 2009; Overexpression of interleukin-23, but not interleukin-17, as an immunologic signature of subclinical intestinal inflammation in ankylosing spondylitis. Arthritis Rheum. 60:955–65. DOI:
10.1002/art.24389. PMID:
19333939.
Article
60. Romand X, Liu X, Rahman MA, Bhuyan ZA, Douillard C, Kedia RA, et al. 2021; Mediation of interleukin-23 and tumor necrosis factor-driven reactive arthritis by Chlamydia-infected macrophages in SKG mice. Arthritis Rheumatol. 73:1200–10. DOI:
10.1002/art.41653. PMID:
33452873.
61. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. 2005; Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 6:1123–32. DOI:
10.1038/ni1254. PMID:
16200070.
Article
62. Klasen C, Meyer A, Wittekind PS, Waqué I, Nabhani S, Kofler DM. 2019; Prostaglandin receptor EP4 expression by Th17 cells is associated with high disease activity in ankylosing spondylitis. Arthritis Res Ther. 21:159. DOI:
10.1186/s13075-019-1948-1. PMID:
31253169. PMCID:
PMC6599260.
Article
63. Schinocca C, Rizzo C, Fasano S, Grasso G, La Barbera L, Ciccia F, et al. 2021; Role of the IL-23/IL-17 pathway in rheumatic diseases: an overview. Front Immunol. 12:637829. DOI:
10.3389/fimmu.2021.637829. PMID:
33692806. PMCID:
PMC7937623.
Article
66. Gracey E, Qaiyum Z, Almaghlouth I, Lawson D, Karki S, Avvaru N, et al. 2016; IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis. Ann Rheum Dis. 75:2124–32. DOI:
10.1136/annrheumdis-2015-208902. PMID:
27165176.
Article
67. Toussirot É, Laheurte C, Gaugler B, Gabriel D, Saas P. 2018; Increased IL-22- and IL-17A-producing mucosal-associated invariant T cells in the peripheral blood of patients with ankylosing spondylitis. Front Immunol. 9:1610. DOI:
10.3389/fimmu.2018.01610. PMID:
30057583. PMCID:
PMC6053500.
Article
68. Cuthbert RJ, Fragkakis EM, Dunsmuir R, Li Z, Coles M, Marzo-Ortega H, et al. 2017; Brief report: group 3 innate lymphoid cells in human enthesis. Arthritis Rheumatol. 69:1816–22. DOI:
10.1002/art.40150. PMID:
28511289.
Article
69. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. 2005; A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 6:1133–41. DOI:
10.1038/ni1261. PMID:
16200068. PMCID:
PMC1618871.
Article
71. Chowdhury AC, Chaurasia S, Mishra SK, Aggarwal A, Misra R. 2017; IL-17 and IFN-γ producing NK and γδ-T cells are preferentially expanded in synovial fluid of patients with reactive arthritis and undifferentiated spondyloarthritis. Clin Immunol. 183:207–12. DOI:
10.1016/j.clim.2017.03.016. PMID:
28390966.
Article
72. Noordenbos T, Yeremenko N, Gofita I, van de Sande M, Tak PP, Caňete JD, et al. 2012; Interleukin-17-positive mast cells contribute to synovial inflammation in spondylarthritis. Arthritis Rheum. 64:99–109. DOI:
10.1002/art.33396. PMID:
21968742.
Article
73. Rosine N, Rowe H, Koturan S, Yahia-Cherbal H, Leloup C, Watad A, et al. 2022; Characterization of blood mucosal-associated invariant T cells in patients with axial spondyloarthritis and of resident mucosal-associated invariant T cells from the axial entheses of non-axial spondyloarthritis control patients. Arthritis Rheumatol. 74:1786–95. DOI:
10.1002/art.42090. PMID:
35166073. PMCID:
PMC9825958.
74. Venken K, Jacques P, Mortier C, Labadia ME, Decruy T, Coudenys J, et al. 2019; RORγt inhibition selectively targets IL-17 producing iNKT and γδ-T cells enriched in Spondyloarthritis patients. Nat Commun. 10:9. DOI:
10.1038/s41467-018-07911-6. PMID:
30602780. PMCID:
PMC6315029.
Article
75. Mortier C, Gracey E, Coudenys J, Manuello T, Decruy T, Maelegheer M, et al. 2023; Jan. 20. RORγt inhibition ameliorates IL-23 driven experimental Psoriatic Arthritis by predominantly modulating γδ-T cells. Rheumatology (Oxford). [Epub]. DOI:10.1093/rheumatology/kead022. DOI:
10.1093/rheumatology/kead022. PMID:
36661300.
Article
76. Liu R, Lauridsen HM, Amezquita RA, Pierce RW, Jane-Wit D, Fang C, et al. 2016; IL-17 promotes neutrophil-mediated immunity by activating microvascular pericytes and not endothelium. J Immunol. 197:2400–8. DOI:
10.4049/jimmunol.1600138. PMID:
27534549. PMCID:
PMC5010945.
Article
77. Lubberts E. 2015; The IL-23-IL-17 axis in inflammatory arthritis. Nat Rev Rheumatol. 11:415–29. Erratum in: Nat Rev Rheumatol 2015;11:562. DOI:
10.1038/nrrheum.2015.53. PMID:
25907700.
Article
78. Griffin GK, Newton G, Tarrio ML, Bu DX, Maganto-Garcia E, Azcutia V, et al. 2012; IL-17 and TNF-α sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. J Immunol. 188:6287–99. DOI:
10.4049/jimmunol.1200385. PMID:
22566565. PMCID:
PMC3370121.
Article
79. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, et al. 2006; Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med. 203:2673–82. DOI:
10.1084/jem.20061775. PMID:
17088434. PMCID:
PMC2118166.
Article
80. Huang H, Kim HJ, Chang EJ, Lee ZH, Hwang SJ, Kim HM, et al. 2009; IL-17 stimulates the proliferation and differentiation of human mesenchymal stem cells: implications for bone remodeling. Cell Death Differ. 16:1332–43. DOI:
10.1038/cdd.2009.74. PMID:
19543237.
Article
82. Hanson AL, Nel HJ, Bradbury L, Phipps J, Thomas R, Lê Cao KA, et al. 2020; Altered repertoire diversity and disease-associated clonal expansions revealed by T cell receptor immunosequencing in ankylosing spondylitis patients. Arthritis Rheumatol. 72:1289–302. DOI:
10.1002/art.41252. PMID:
32162785.
Article
84. Zheng M, Zhang X, Zhou Y, Tang J, Han Q, Zhang Y, et al. 2019; TCR repertoire and CDR3 motif analyses depict the role of αβ T cells in Ankylosing spondylitis. EBioMedicine. 47:414–26. DOI:
10.1016/j.ebiom.2019.07.032. PMID:
31477563. PMCID:
PMC6796593.
Article
85. Gracey E, Yao Y, Qaiyum Z, Lim M, Tang M, Inman RD. 2020; Altered cytotoxicity profile of CD8+ T cells in ankylosing spondylitis. Arthritis Rheumatol. 72:428–34. DOI:
10.1002/art.41129. PMID:
31599089.
87. Ren C, Li M, Zheng Y, Cai B, Du W, Zhang H, et al. 2022; Single-cell RNA-seq reveals altered NK cell subsets and reduced levels of cytotoxic molecules in patients with ankylosing spondylitis. J Cell Mol Med. 26:1071–82. DOI:
10.1111/jcmm.17159. PMID:
34994057. PMCID:
PMC8831943.
Article
88. Yang M, Zhou Y, Liu L, Wang S, Jiang J, Shang Q, et al. 2019; Decreased A20 expression on circulating CD56bright NK cells contributes to a worse disease status in patients with ankylosing spondylitis. Clin Exp Immunol. 198:1–10. DOI:
10.1111/cei.13341. PMID:
31206174. PMCID:
PMC6718289.
Article
89. Schulte-Wrede U, Sörensen T, Grün JR, Häupl T, Hirseland H, Steinbrich-Zöllner M, et al. 2018; An explorative study on deep profiling of peripheral leukocytes to identify predictors for responsiveness to anti-tumour necrosis factor alpha therapies in ankylosing spondylitis: natural killer cells in focus. Arthritis Res Ther. 20:191. DOI:
10.1186/s13075-018-1692-y. PMID:
30157966. PMCID:
PMC6116509.
Article
90. Jiang Y, Yang M, Zhang Y, Huang Y, Wu J, Xie Y, et al. 2021; Dynamics of adaptive immune cell and NK cell subsets in patients with ankylosing spondylitis after IL-17A inhibition by secukinumab. Front Pharmacol. 12:738316. DOI:
10.3389/fphar.2021.738316. PMID:
34721027. PMCID:
PMC8551761.
Article
91. Maksymowych WP, Wichuk S, Chiowchanwisawakit P, Lambert RG, Pedersen SJ. 2014; Fat metaplasia and backfill are key intermediaries in the development of sacroiliac joint ankylosis in patients with ankylosing spondylitis. Arthritis Rheumatol. 66:2958–67. DOI:
10.1002/art.38792. PMID:
25047851.
Article
92. Baraliakos X, Boehm H, Bahrami R, Samir A, Schett G, Luber M, et al. 2019; What constitutes the fat signal detected by MRI in the spine of patients with ankylosing spondylitis? A prospective study based on biopsies obtained during planned spinal osteotomy to correct hyperkyphosis or spinal stenosis. Ann Rheum Dis. 78:1220–5. DOI:
10.1136/annrheumdis-2018-214983. PMID:
31122911.
Article
93. Bleil J, Maier R, Hempfing A, Schlichting U, Appel H, Sieper J, et al. 2014; Histomorphologic and histomorphometric characteristics of zygapophyseal joint remodeling in ankylosing spondylitis. Arthritis Rheumatol. 66:1745–54. DOI:
10.1002/art.38404. PMID:
24574301.
Article
94. Bleil J, Maier R, Hempfing A, Sieper J, Appel H, Syrbe U. 2016; Granulation tissue eroding the subchondral bone also promotes new bone formation in ankylosing spondylitis. Arthritis Rheumatol. 68:2456–65. DOI:
10.1002/art.39715. PMID:
27111225.
Article
95. Rahman P, Inman RD, Gladman DD, Reeve JP, Peddle L, Maksymowych WP. 2008; Association of interleukin-23 receptor variants with ankylosing spondylitis. Arthritis Rheum. 58:1020–5. DOI:
10.1002/art.23389. PMID:
18383363.
Article
96. Sherlock JP, Joyce-Shaikh B, Turner SP, Chao CC, Sathe M, Grein J, et al. 2012; IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4-CD8- entheseal resident T cells. Nat Med. 18:1069–76. DOI:
10.1038/nm.2817. PMID:
22772566.
Article
97. Langrish CL, McKenzie BS, Wilson NJ, de Waal Malefyt R, Kastelein RA, Cua DJ. 2004; IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev. 202:96–105. DOI:
10.1111/j.0105-2896.2004.00214.x. PMID:
15546388.
Article
98. Veale DJ, McGonagle D, McInnes IB, Krueger JG, Ritchlin CT, Elewaut D, et al. 2019; The rationale for Janus kinase inhibitors for the treatment of spondyloarthritis. Rheumatology (Oxford). 58:197–205. DOI:
10.1093/rheumatology/key070. PMID:
29618084. PMCID:
PMC6343466.
Article
99. Li CH, Xu LL, Jian LL, Yu RH, Zhao JX, Sun L, et al. 2018; Stattic inhibits RANKL-mediated osteoclastogenesis by suppressing activation of STAT3 and NF-κB pathways. Int Immunopharmacol. 58:136–44. DOI:
10.1016/j.intimp.2018.03.021. PMID:
29587202.
Article
100. Jo S, Won EJ, Kim MJ, Lee YJ, Jin SH, Park PR, et al. 2021; STAT3 phosphorylation inhibition for treating inflammation and new bone formation in ankylosing spondylitis. Rheumatology (Oxford). 60:3923–35. DOI:
10.1093/rheumatology/keaa846. PMID:
33237331.
Article
101. Russell T, Watad A, Bridgewood C, Rowe H, Khan A, Rao A, et al. 2021; IL-17A and TNF modulate normal human spinal entheseal bone and soft tissue mesenchymal stem cell osteogenesis, adipogenesis, and stromal function. Cells. 10:341. DOI:
10.3390/cells10020341. PMID:
33562025. PMCID:
PMC7915379.
Article
102. Kaaij MH, van Tok MN, Blijdorp IC, Ambarus CA, Stock M, Pots D, et al. 2020; Transmembrane TNF drives osteoproliferative joint inflammation reminiscent of human spondyloarthritis. J Exp Med. 217:e20200288. DOI:
10.1084/jem.20200288. PMID:
32662821. PMCID:
PMC7537402.
Article
104. Kozaci LD, Sari I, Alacacioglu A, Akar S, Akkoc N. 2010; Evaluation of inflammation and oxidative stress in ankylosing spondylitis: a role for macrophage migration inhibitory factor. Mod Rheumatol. 20:34–9. DOI:
10.3109/s10165-009-0230-9. PMID:
19787418.
Article
105. Ranganathan V, Ciccia F, Zeng F, Sari I, Guggino G, Muralitharan J, et al. 2017; Macrophage migration inhibitory factor induces inflammation and predicts spinal progression in ankylosing spondylitis. Arthritis Rheumatol. 69:1796–806. DOI:
10.1002/art.40175. PMID:
28597514.
Article
106. Heiland GR, Appel H, Poddubnyy D, Zwerina J, Hueber A, Haibel H, et al. 2012; High level of functional dickkopf-1 predicts protection from syndesmophyte formation in patients with ankylosing spondylitis. Ann Rheum Dis. 71:572–4. DOI:
10.1136/annrheumdis-2011-200216. PMID:
22186710.
Article
107. Uderhardt S, Diarra D, Katzenbeisser J, David JP, Zwerina J, Richards W, et al. 2010; Blockade of Dickkopf (DKK)-1 induces fusion of sacroiliac joints. Ann Rheum Dis. 69:592–7. DOI:
10.1136/ard.2008.102046. PMID:
19304568.
Article
108. Aschermann S, Englbrecht M, Bergua A, Spriewald BM, Said-Nahal R, Breban M, et al. 2016; Presence of HLA-B27 is associated with changes of serum levels of mediators of the Wnt and hedgehog pathway. Joint Bone Spine. 83:43–6. DOI:
10.1016/j.jbspin.2015.03.019. PMID:
26494593.
Article
109. Caparbo VF, Saad CGS, Moraes JC, de Brum-Fernandes AJ, Pereira RMR. 2018; Monocytes from male patients with ankylosing spondylitis display decreased osteoclastogenesis and decreased RANKL/OPG ratio. Osteoporos Int. 29:2565–73. DOI:
10.1007/s00198-018-4629-z. PMID:
30006885.
Article
110. Wang CM, Tsai SC, Lin JC, Wu YJ, Wu J, Chen JY. 2019; Association of genetic variants of
RANK,
RANKL, and
OPG with ankylosing spondylitis clinical features in Taiwanese. Mediators Inflamm. 2019:8029863. DOI:
10.1155/2019/8029863. PMID:
31015798. PMCID:
PMC6446096.
111. Dar HY, Azam Z, Anupam R, Mondal RK, Srivastava RK. 2018; Osteoimmunology: the
Nexus between bone and immune system. Front Biosci (Landmark Ed). 23:464–92. DOI:
10.2741/4600. PMID:
28930556.
112. Davis JC Jr, Van Der Heijde D, Braun J, Dougados M, Cush J, Clegg DO, et al. 2003; Recombinant human tumor necrosis factor receptor (etanercept) for treating ankylosing spondylitis: a randomized, controlled trial. Arthritis Rheum. 48:3230–6. DOI:
10.1002/art.11325. PMID:
14613288.
Article
113. van der Heijde D, Dijkmans B, Geusens P, Sieper J, DeWoody K, Williamson P, et al. 2005; Efficacy and safety of infliximab in patients with ankylosing spondylitis: results of a randomized, placebo-controlled trial (ASSERT). Arthritis Rheum. 52:582–91. DOI:
10.1002/art.20852. PMID:
15692973.
Article
114. van der Heijde D, Kivitz A, Schiff MH, Sieper J, Dijkmans BA, Braun J, et al. 2006; Efficacy and safety of adalimumab in patients with ankylosing spondylitis: results of a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 54:2136–46. DOI:
10.1002/art.21913. PMID:
16802350.
Article
115. Inman RD, Davis JC Jr, Heijde D, Diekman L, Sieper J, Kim SI, et al. 2008; Efficacy and safety of golimumab in patients with ankylosing spondylitis: results of a randomized, double-blind, placebo-controlled, phase III trial. Arthritis Rheum. 58:3402–12. DOI:
10.1002/art.23969. PMID:
18975305.
Article
116. Maxwell LJ, Zochling J, Boonen A, Singh JA, Veras MM, Tanjong Ghogomu E, et al. 2014; TNF-alpha inhibitors for ankylosing spondylitis. Cochrane Database Syst Rev. (4):CD005468. DOI:
10.1002/14651858.CD005468.pub2. PMID:
25887212.
Article
117. Ward MM, Deodhar A, Gensler LS, Dubreuil M, Yu D, Khan MA, et al. 2019; 2019 Update of the American College of Rheumatology/Spondylitis Association of America/Spondyloarthritis Research and Treatment Network recommendations for the treatment of ankylosing spondylitis and nonradiographic axial spondyloarthritis. Arthritis Rheumatol. 71:1599–613. DOI:
10.1002/art.41042. PMID:
31436036. PMCID:
PMC6764882.
Article
118. Ko JM, Gottlieb AB, Kerbleski JF. 2009; Induction and exacerbation of psoriasis with TNF-blockade therapy: a review and analysis of 127 cases. J Dermatolog Treat. 20:100–8. DOI:
10.1080/09546630802441234. PMID:
18923992.
Article
119. Alivernini S, Pugliese D, Tolusso B, Bui L, Petricca L, Guidi L, et al. 2018; Paradoxical arthritis occurring during anti-TNF in patients with inflammatory bowel disease: histological and immunological features of a complex synovitis. RMD Open. 4:e000667. DOI:
10.1136/rmdopen-2018-000667. PMID:
29657833. PMCID:
PMC5892785.
Article
120. Karmacharya P, Duarte-Garcia A, Dubreuil M, Murad MH, Shahukhal R, Shrestha P, et al. 2020; Effect of therapy on radiographic progression in axial spondyloarthritis: a systematic review and meta-analysis. Arthritis Rheumatol. 72:733–49. DOI:
10.1002/art.41206. PMID:
31960614. PMCID:
PMC7218689.
Article
121. Zhang JR, Liu XJ, Xu WD, Dai SM. 2016; Effects of tumor necrosis factor-α inhibitors on new bone formation in ankylosing spondylitis. Joint Bone Spine. 83:257–64. DOI:
10.1016/j.jbspin.2015.06.013. PMID:
26678001.
Article
123. Lee YH. 2022; Comparative efficacy and safety of Janus kinase inhibitors and secukinumab in patients with active ankylosing spondylitis: a systematic review and meta-analysis. Pharmacology. 107:537–44. DOI:
10.1159/000525627. PMID:
35817017. PMCID:
PMC9811419.
Article
124. Deodhar A, Gensler LS, Sieper J, Clark M, Calderon C, Wang Y, et al. 2019; Three multicenter, randomized, double-blind, placebo-controlled studies evaluating the efficacy and safety of ustekinumab in axial spondyloarthritis. Arthritis Rheumatol. 71:258–70. DOI:
10.1002/art.40728. PMID:
30225992.
Article
125. Kavanaugh A, Puig L, Gottlieb AB, Ritchlin C, You Y, Li S, et al. 2016; Efficacy and safety of ustekinumab in psoriatic arthritis patients with peripheral arthritis and physician-reported spondylitis: post-hoc analyses from two phase III, multicentre, double-blind, placebo-controlled studies (PSUMMIT-1/PSUMMIT-2). Ann Rheum Dis. 75:1984–8. DOI:
10.1136/annrheumdis-2015-209068. PMID:
27098404.
Article
126. Savage L, Goodfield M, Horton L, Watad A, Hensor E, Emery P, et al. 2019; Regression of peripheral subclinical enthesopathy in therapy-naive patients treated with ustekinumab for moderate-to-severe chronic plaque psoriasis: a fifty-two-week, prospective, open-label feasibility study. Arthritis Rheumatol. 71:626–31. DOI:
10.1002/art.40778. PMID:
30468001.
127. Deodhar A, Helliwell PS, Boehncke WH, Kollmeier AP, Hsia EC, Subramanian RA, et al. 2020; Guselkumab in patients with active psoriatic arthritis who were biologic-naive or had previously received TNFα inhibitor treatment (DISCOVER-1): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet. 395:1115–25. Erratum in: Lancet 2020;395:1114. DOI:
10.1016/S0140-6736(20)30265-8. PMID:
32178765.
Article
129. Deodhar A, Blanco R, Dokoupilová E, Hall S, Kameda H, Kivitz AJ, et al. 2021; Improvement of signs and symptoms of nonradiographic axial spondyloarthritis in patients treated with secukinumab: primary results of a randomized, placebo-controlled phase III study. Arthritis Rheumatol. 73:110–20. DOI:
10.1002/art.41477. PMID:
32770640. PMCID:
PMC7839589.
Article
130. van Mens LJJ, van de Sande MGH, Menegatti S, Chen S, Blijdorp ICJ, de Jong HM, et al. 2018; Brief report: interleukin-17 blockade with secukinumab in peripheral spondyloarthritis impacts synovial immunopathology without compromising systemic immune responses. Arthritis Rheumatol. 70:1994–2002. DOI:
10.1002/art.40581. PMID:
29869838.
Article
131. Mease PJ, Smolen JS, Behrens F, Nash P, Liu Leage S, Li L, et al. 2020; A head-to-head comparison of the efficacy and safety of ixekizumab and adalimumab in biological-naïve patients with active psoriatic arthritis: 24-week results of a randomised, open-label, blinded-assessor trial. Ann Rheum Dis. 79:123–31. DOI:
10.1136/annrheumdis-2019-215386. PMID:
31563894. PMCID:
PMC6937408.
Article
132. Chandran V, van der Heijde D, Fleischmann RM, Lespessailles E, Helliwell PS, Kameda H, et al. 2020; Ixekizumab treatment of biologic-naïve patients with active psoriatic arthritis: 3-year results from a phase III clinical trial (SPIRIT-P1). Rheumatology (Oxford). 59:2774–84. DOI:
10.1093/rheumatology/kez684. PMID:
32031665. PMCID:
PMC7516094.
Article
133. Hohenberger M, Cardwell LA, Oussedik E, Feldman SR. 2018; Interleukin-17 inhibition: role in psoriasis and inflammatory bowel disease. J Dermatolog Treat. 29:13–8. DOI:
10.1080/09546634.2017.1329511. PMID:
28521565.
Article
134. Kammüller M, Tsai TF, Griffiths CE, Kapoor N, Kolattukudy PE, Brees D, et al. 2017; Inhibition of IL-17A by secukinumab shows no evidence of increased
Mycobacterium tuberculosis infections. Clin Transl Immunology. 6:e152. DOI:
10.1038/cti.2017.34. PMID:
28868144. PMCID:
PMC5579471.
Article
135. Wei JC, Kim TH, Kishimoto M, Ogusu N, Jeong H, Kobayashi S. 2021; Efficacy and safety of brodalumab, an anti-IL17RA monoclonal antibody, in patients with axial spondyloarthritis: 16-week results from a randomised, placebo-controlled, phase 3 trial. Ann Rheum Dis. 80:1014–21. DOI:
10.1136/annrheumdis-2020-219406. PMID:
33827787. PMCID:
PMC8292606.
Article
136. Kim TH, Kishimoto M, Wei JC, Jeong H, Nozaki A, Kobayashi S. 2023; Brodalumab, an anti-interleukin-17 receptor A monoclonal antibody, in axial spondyloarthritis: 68-week results from a phase 3 study. Rheumatology (Oxford). 62:1851–9. DOI:
10.1093/rheumatology/keac522. PMID:
36130275. PMCID:
PMC10152297.
Article
137. van der Heijde D, Gensler LS, Deodhar A, Baraliakos X, Poddubnyy D, Kivitz A, et al. 2020; Dual neutralisation of interleukin-17A and interleukin-17F with bimekizumab in patients with active ankylosing spondylitis: results from a 48-week phase IIb, randomised, double-blind, placebo-controlled, dose-ranging study. Ann Rheum Dis. 79:595–604. Erratum in: Ann Rheum Dis 2021;80:e186. DOI:
10.1136/annrheumdis-2020-216980. PMID:
32253184. PMCID:
PMC7213320.
Article
138. Baraliakos X, Deodhar A, Dougados M, Gensler LS, Molto A, Ramiro S, et al. 2022; Safety and efficacy of bimekizumab in patients with active ankylosing spondylitis: three-year results from a phase IIb randomized controlled trial and its open-label extension study. Arthritis Rheumatol. 74:1943–58. DOI:
10.1002/art.42282. PMID:
35829672.
139. van der Heijde D, Baraliakos X, Sieper J, Deodhar A, Inman RD, Kameda H, et al. 2022; Efficacy and safety of upadacitinib for active ankylosing spondylitis refractory to biological therapy: a double-blind, randomised, placebo-controlled phase 3 trial. Ann Rheum Dis. 81:1515–23. DOI:
10.1136/ard-2022-222608. PMID:
35788492. PMCID:
PMC9606523.
Article
140. Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, O'Shea JJ. 2017; JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 16:843–62. Erratum in: Nat Rev Drug Discov 2017;17:78. DOI:
10.1038/nrd.2017.201. PMID:
29104284. PMCID:
PMC6168198.
Article
141. Deodhar A, Sliwinska-Stanczyk P, Xu H, Baraliakos X, Gensler LS, Fleishaker D, et al. 2021; Tofacitinib for the treatment of ankylosing spondylitis: a phase III, randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 80:1004–13. DOI:
10.1136/annrheumdis-2020-219601. PMID:
33906853. PMCID:
PMC8292568.
Article
142. Taylor PC, Saurigny D, Vencovsky J, Takeuchi T, Nakamura T, Matsievskaia G, et al. 2019; Efficacy and safety of namilumab, a human monoclonal antibody against granulocyte-macrophage colony-stimulating factor (GM-CSF) ligand in patients with rheumatoid arthritis (RA) with either an inadequate response to background methotrexate therapy or an inadequate response or intolerance to an anti-TNF (tumour necrosis factor) biologic therapy: a randomized, controlled trial. Arthritis Res Ther. 21:101. DOI:
10.1186/s13075-019-1879-x. PMID:
30999929. PMCID:
PMC6471864.
Article
143. Perrotta FM, Scriffignano S, Ciccia F, Lubrano E. 2022; Therapeutic targets for ankylosing spondylitis - recent insights and future prospects. Open Access Rheumatol. 14:57–66. DOI:
10.2147/OARRR.S295033. PMID:
35469137. PMCID:
PMC9034883.
Article
145. Sen R, Kim E, Napier RJ, Cheng E, Fernandez A, Manning ES, et al. 2023; Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio as biomarkers in axial spondyloarthritis: observational studies from the Program to Understand the Longterm Outcomes in Spondyloarthritis registry. Arthritis Rheumatol. 75:232–41. DOI:
10.1002/art.42333. PMID:
36053919. PMCID:
PMC9892177.
146. Wang J, Su J, Yuan Y, Jin X, Shen B, Lu G. 2021; The role of lymphocyte-monocyte ratio on axial spondyloarthritis diagnosis and sacroiliitis staging. BMC Musculoskelet Disord. 22:86. DOI:
10.1186/s12891-021-03973-8. PMID:
33453722. PMCID:
PMC7811735.
Article
147. Lee JH, Jung JH, Kim J, Baek WK, Rhee J, Kim TH, et al. 2020; Proteomic analysis of human synovial fluid reveals potential diagnostic biomarkers for ankylosing spondylitis. Clin Proteomics. 17:20. DOI:
10.1186/s12014-020-09281-y. PMID:
32518534. PMCID:
PMC7269004.
Article
148. Quaden D, Vandormael P, Ruytinx P, Geusens P, Corten K, Vanhoof J, et al. 2020; Antibodies against three novel peptides in early axial spondyloarthritis patients from two independent cohorts. Arthritis Rheumatol. 72:2094–105. DOI:
10.1002/art.41427. PMID:
32638516.
Article
149. Do L, Granåsen G, Hellman U, Lejon K, Geijer M, Baraliakos X, et al. 2021; Anti-CD74 IgA autoantibodies in radiographic axial spondyloarthritis: a longitudinal Swedish study. Rheumatology (Oxford). 60:4085–93. DOI:
10.1093/rheumatology/keaa882. PMID:
33369649. PMCID:
PMC8410007.
Article
150. De Craemer AS, Witte T, Lobaton Ortega T, Hoorens A, De Vos M, Cuvelier C, et al. 2023; Anti-CD74 IgA antibodies show diagnostic potential for axial spondyloarthritis but are not associated with microscopic gut inflammation. Rheumatology (Oxford). 62:984–90. DOI:
10.1093/rheumatology/keac384. PMID:
35781486.
Article
151. Abdelaziz MM, Gamal RM, Ismail NM, Lafy RA, Hetta HF. 2021; Diagnostic value of anti-CD74 antibodies in early and late axial spondyloarthritis and its relationship to disease activity. Rheumatology (Oxford). 60:263–8. DOI:
10.1093/rheumatology/keaa292. PMID:
32710117.
Article
152. Baraliakos X, Baerlecken N, Witte T, Heldmann F, Braun J. 2014; High prevalence of anti-CD74 antibodies specific for the HLA class II-associated invariant chain peptide (CLIP) in patients with axial spondyloarthritis. Ann Rheum Dis. 73:1079–82. DOI:
10.1136/annrheumdis-2012-202177. PMID:
23644552.
Article
153. Riechers E, Baerlecken N, Baraliakos X, Achilles-Mehr Bakhsh K, Aries P, Bannert B, et al. 2019; Sensitivity and specificity of autoantibodies against CD74 in nonradiographic axial spondyloarthritis. Arthritis Rheumatol. 71:729–35. DOI:
10.1002/art.40777. PMID:
30418704.