1. Laube B, Hirai H, Sturgess M, Betz H, Kuhse J. 1997; Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron. 18:493–503. DOI:
10.1016/S0896-6273(00)81249-0. PMID:
9115742.
Article
2. Yau SY, Bettio L, Vetrici M, Truesdell A, Chiu C, Chiu J, Truesdell E, Christie BR. 2018; Chronic minocycline treatment improves hippocampal neuronal structure, NMDA receptor function, and memory processing in Fmr1 knockout mice. Neurobiol Dis. 113:11–22. DOI:
10.1016/j.nbd.2018.01.014. PMID:
29367010.
Article
3. Korinek M, Kapras V, Vyklicky V, Adamusova E, Borovska J, Vales K, Stuchlik A, Horak M, Chodounska H, Vyklicky L Jr. 2011; Neurosteroid modulation of N-methyl-D-aspartate receptors: molecular mechanism and behavioral effects. Steroids. 76:1409–1418. DOI:
10.1016/j.steroids.2011.09.002. PMID:
21925193.
Article
4. Świetlik D, Kusiak A, Ossowska A. 2022; Computational modeling of therapy with the NMDA antagonist in neurodegenerative disease: information theory in the mechanism of action of memantine. Int J Environ Res Public Health. 19:4727. DOI:
10.3390/ijerph19084727. PMID:
35457595. PMCID:
PMC9027074.
Article
5. Lipton SA. 2007; Pathologically-activated therapeutics for neuroprotection: mechanism of NMDA receptor block by memantine and S-nitrosylation. Curr Drug Targets. 8:621–632. DOI:
10.2174/138945007780618472. PMID:
17504105.
Article
7. Hirano K, Fujimaki M, Sasazawa Y, Yamaguchi A, Ishikawa KI, Miyamoto K, Souma S, Furuya N, Imamichi Y, Yamada D, Saya H, Akamatsu W, Saiki S, Hattori N. 2019; Neuroprotective effects of memantine via enhancement of autophagy. Biochem Biophys Res Commun. 518:161–170. DOI:
10.1016/j.bbrc.2019.08.025. PMID:
31431260.
Article
8. Companys-Alemany J, Turcu AL, Schneider M, Müller CE, Vázquez S, Griñán-Ferré C, Pallàs M. 2022; NMDA receptor antagonists reduce amyloid-β deposition by modulating calpain-1 signaling and autophagy, rescuing cognitive impairment in 5XFAD mice. Cell Mol Life Sci. 79:408. DOI:
10.1007/s00018-022-04438-4. PMID:
35810220. PMCID:
PMC9271115.
Article
11. Bechthold E, Schreiber JA, Lehmkuhl K, Frehland B, Schepmann D, Bernal FA, Daniliuc C, Álvarez I, Garcia CV, Schmidt TJ, Seebohm G, Wünsch B. 2021; Ifenprodil stereoisomers: synthesis, absolute configuration, and correlation with biological activity. J Med Chem. 64:1170–1179. DOI:
10.1021/acs.jmedchem.0c01912. PMID:
33426889.
Article
12. Sun JY, Zhao SJ, Wang HB, Hou YJ, Mi QJ, Yang MF, Yuan H, Ni QB, Sun BL, Zhang ZY. 2021; Ifenprodil improves long-term neurologic deficits through antagonizing glutamate-induced excitotoxicity after experimental subarachnoid hemorrhage. Transl Stroke Res. 12:1067–1080. DOI:
10.1007/s12975-021-00906-4. PMID:
33713028.
Article
13. Sparrow JR, Cai B, Fishkin N, Jang YP, Krane S, Vollmer HR, Zhou J, Nakanishi K. 2003; A2E, a fluorophore of RPE lipofuscin: can it cause RPE degeneration? Adv Exp Med Biol. 533:205–211. DOI:
10.1007/978-1-4615-0067-4_26. PMID:
15180266.
Article
15. Li WW, Wang HJ, Tan YZ, Wang YL, Yu SN, Li ZH. 2021; Reducing lipofuscin accumulation and cardiomyocytic senescence of aging heart by enhancing autophagy. Exp Cell Res. 403:112585. DOI:
10.1016/j.yexcr.2021.112585. PMID:
33811905.
Article
19. Jin HL, Lee SC, Kwon YS, Choung SY, Jeong KW. 2016; A novel fluorescence-based assay for measuring A2E removal from human retinal pigment epithelial cells to screen for age-related macular degeneration inhibitors. J Pharm Biomed Anal. 117:560–567. DOI:
10.1016/j.jpba.2015.10.010. PMID:
26604166.
Article
22. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, Ohsumi Y. 2000; A ubiquitin-like system mediates protein lipidation. Nature. 408:488–492. DOI:
10.1038/35044114. PMID:
11100732.
Article
23. Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R, Saito T, Yang Y, Kouno T, Fukutomi T, Hoshii T, Hirao A, Takagi K, Mizushima T, Motohashi H, Lee MS, Yoshimori T, Tanaka K, Yamamoto M, Komatsu M. 2013; Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell. 51:618–631. DOI:
10.1016/j.molcel.2013.08.003. PMID:
24011591.
Article
24. Taguchi K, Fujikawa N, Komatsu M, Ishii T, Unno M, Akaike T, Motohashi H, Yamamoto M. 2012; Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proc Natl Acad Sci U S A. 109:13561–13566. DOI:
10.1073/pnas.1121572109. PMID:
22872865. PMCID:
PMC3427110.
Article
26. Matsumoto G, Wada K, Okuno M, Kurosawa M, Nukina N. 2011; Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol Cell. 44:279–289. DOI:
10.1016/j.molcel.2011.07.039. PMID:
22017874.
Article
28. Ishibashi K, Fujita N, Kanno E, Omori H, Yoshimori T, Itoh T, Fukuda M. 2011; Atg16L2, a novel isoform of mammalian Atg16L that is not essential for canonical autophagy despite forming an Atg12-5-16L2 complex. Autophagy. 7:1500–1513. DOI:
10.4161/auto.7.12.18025. PMID:
22082872. PMCID:
PMC3288023.
Article
29. Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T. 2008; The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell. 19:2092–2100. DOI:
10.1091/mbc.e07-12-1257. PMID:
18321988. PMCID:
PMC2366860.
Article
31. Winkler D, Leyhe T. 2018; Alzheimer's disease - State of the art, and emerging diagnostics and therapeutics. Ther Umsch. 75:432–437. German. DOI:
10.1024/0040-5930/a001020. PMID:
30935362.
32. Klein R, Klein BE, Knudtson MD, Meuer SM, Swift M, Gangnon RE. 2007; Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study. Ophthalmology. 114:253–262. DOI:
10.1016/j.ophtha.2006.10.040. PMID:
17270675.
Article
33. Baird PN, Robman LD, Richardson AJ, Dimitrov PN, Tikellis G, McCarty CA, Guymer RH. 2008; Gene-environment interaction in progression of AMD: the CFH gene, smoking and exposure to chronic infection. Hum Mol Genet. 17:1299–1305. DOI:
10.1093/hmg/ddn018. PMID:
18203751.
Article
34. Hammer M, Richter S, Guehrs KH, Schweitzer D. 2006; Retinal pigment epithelium cell damage by A2-E and its photo-derivatives. Mol Vis. 12:1348–1354. DOI:
10.1007/springerreference_36603. PMID:
17110917.
36. Jeong SY, Gu X, Jeong KW. 2019; Photoactivation of N-retinylidene-N-retinylethanolamine compromises autophagy in retinal pigmented epithelial cells. Food Chem Toxicol. 131:110555. DOI:
10.1016/j.fct.2019.06.002. PMID:
31173818.
Article
38. Yoon WS, Yeom MY, Kang ES, Chung YA, Chung DS, Jeun SS. 2017; Memantine induces NMDAR1-mediated autophagic cell death in malignant glioma cells. J Korean Neurosurg Soc. 60:130–137. DOI:
10.3340/jkns.2016.0101.006. PMID:
28264232. PMCID:
PMC5365296.
Article
39. Yao Y, Ju P, Liu H, Wu X, Niu Z, Zhu Y, Zhang C, Fang Y. 2020; Ifenprodil rapidly ameliorates depressive-like behaviors, activates mTOR signaling and modulates proinflammatory cytokines in the hippocampus of CUMS rats. Psychopharmacology (Berl). 237:1421–1433. DOI:
10.1007/s00213-020-05469-0. PMID:
32130432.
Article
40. Al-Bari MAA, Xu P. 2020; Molecular regulation of autophagy machinery by mTOR-dependent and -independent pathways. Ann N Y Acad Sci. 1467:3–20. DOI:
10.1111/nyas.14305. PMID:
31985829.
Article
41. Sarkar S, Ravikumar B, Floto RA, Rubinsztein DC. 2009; Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ. 16:46–56. DOI:
10.1038/cdd.2008.110. PMID:
18636076.
Article