1. Firszt JB, Reeder RM, Holden LK. Unilateral hearing loss: understanding speech recognition and localization variability-implications for cochlear implant candidacy. Ear Hear. 2017; Mar/Apr. 38(2):159–73.
2. Luntz M, Brodsky A, Watad W, Weiss H, Tamir A, Pratt H. Sound localization in patients with unilateral cochlear implants. Cochlear Implants Int. 2005; Mar. 6(1):1–9.
3. Kuk F, Keenan DM, Lau C, Crose B, Schumacher J. Evaluation of a localization training program for hearing impaired listeners. Ear Hear. 2014; Nov-Dec. 35(6):652–66.
4. Mendonca C, Campos G, Dias P, Santos JA. Learning auditory space: generalization and long-term effects. PLoS One. 2013; Oct. 8(10):e77900.
5. Steadman MA, Kim C, Lestang JH, Goodman DF, Picinali L. Short-term effects of sound localization training in virtual reality. Sci Rep. 2019; Dec. 9(1):18284.
6. Hanenberg C, Schluter MC, Getzmann S, Lewald J. Short-term audiovisual spatial training enhances electrophysiological correlates of auditory selective spatial attention. Front Neurosci. 2021; Jul. 15:645702.
7. Hofman PM, Van Riswick JG, Van Opstal AJ. Relearning sound localization with new ears. Nat Neurosci. 1998; Sep. 1(5):417–21.
8. Yu F, Li H, Zhou X, Tang X, Galvin Iii JJ, Fu QJ, et al. Effects of training on lateralization for simulations of cochlear implants and single-sided deafness. Front Hum Neurosci. 2018; Jul. 12:287.
9. Zonooz B, Van Opstal AJ. Differential adaptation in azimuth and elevation to acute monaural spatial hearing after training with visual feedback. eNeuro. 2019; Nov. 6(6):1–18.
10. Cai Y, Chen G, Zhong X, Yu G, Mo H, Jiang J, et al. Influence of audiovisual training on horizontal sound localization and its related ERP response. Front Hum Neurosci. 2018. Oct. 6(23):12–423.
11. Kumpik DP, Campbell C, Schnupp JW, King AJ. Re-weighting of sound localization cues by audiovisual training. Front Neurosci. 2019; Nov. 13:1164.
12. Jenny C, Reuter C. Usability of individualized head-related transfer functions in virtual reality: empirical study with perceptual attributes in sagittal plane sound localization. JMIR Serious Games. 2020; Sep. 8(3):e17576.
13. Stitt P, Picinali L, Katz BF. Auditory accommodation to poorly matched non-individual spectral localization cues through active learning. Sci Rep. 2019; Jan. 9(1):1063.
14. Agterberg MJ, Hol MK, Van Wanrooij MM, Van Opstal AJ, Snik AF. Single-sided deafness and directional hearing: contribution of spectral cues and high-frequency hearing loss in the hearing ear. Front Neurosci. 2014; Jul. 8:188.
15. Kumpik DP, King AJ. A review of the effects of unilateral hearing loss on spatial hearing. Hear Res. 2019; Feb. 372:17–28.
16. Kulkarni A, Colburn HS. Role of spectral detail in sound-source localization. Nature. 1998; Dec. 396(6713):747–9.
17. Van de Heyning P, Tavora-Vieira D, Mertens G, Van Rompaey V, Rajan GP, Muller J, et al. Towards a unified testing framework for single-sided deafness studies: a consensus paper. Audiol Neurootol. 2016; 21(6):391–8.
18. Kim BJ, An YH, Choi JW, Park MK, Ahn JH, Lee SH, et al. Standardization for a Korean version of the Speech, Spatial and Qualities of Hearing Scale: study of validity and reliability. Korean J Otorhinolaryngol-Head Neck Surg. 2017; Jun. 60(6):279–94.
19. R Core Team. R: a language and environment for statistical computing [Internet]. R Foundation for Statistical Computing;2021. [cited 2023 Jun 1]. Available from:
https://www.R-project.org/.
20. Kassambara A. Rstatix: pipe-friendly framework for basic statistical tests [Internet]. R Foundation for Statistical Computing;2023. [cited 2023 Jun 1]. Available from:
https://CRAN.R-project.org/package=rstatix.
21. Bates D, Machler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015; Oct. 67(1):1–48.
22. Lenth RV, Bolker B, Buerkner P, Gine-Vazquez I, Herve M, Jung M, et al. Emmeans: estimated marginal means, aka least-squares means [Internet]. R Foundation for Statistical Computing;2023. [cited 2023 Jun 1]. Available from:
https://CRAN.R-project.org/package=emmeans.
23. Selker R, Love J, Dropmann D, Moreno V. jmv: The ‘jamovi’ analyses [Internet]. R Foundation for Statistical Computing;2022. [cited 2023 Jun 1]. Available from:
https://CRAN.R-project.org/package=jmv.
24. Kim JH, Shim L, Bahng J, Lee HJ. Proficiency in using level cue for sound localization is related to the auditory cortical structure in patients with single-sided deafness. Front Neurosci. 2021; Oct. 15:749824.
25. Van Wanrooij MM, Van Opstal AJ. Sound localization under perturbed binaural hearing. J Neurophysiol. 2007; Jan. 97(1):715–26.
26. Derey K, Valente G, de Gelder B, Formisano E. Opponent coding of sound location (azimuth) in planum temporale is robust to sound-level variations. Cereb Cortex. 2016; Jan. 26(1):450–64.
28. Braren HS, Fels J. Towards child-appropriate virtual acoustic environments: a database of high-resolution HRTF measurements and 3D-scans of children. Int J Environ Res Public Health. 2021; Dec. 19(1):324.
29. Valzolgher C, Verdelet G, Salemme R, Lombardi L, Gaveau V, Farne A, et al. Reaching to sounds in virtual reality: a multisensory-motor approach to promote adaptation to altered auditory cues. Neuropsychologia. 2020; Dec. 149:107665.
30. Parseihian G, Katz BF. Rapid head-related transfer function adaptation using a virtual auditory environment. J Acoust Soc Am. 2012; Apr. 131(4):2948–57.