Int J Stem Cells.  2023 Aug;16(3):304-314. 10.15283/ijsc21242.

Hypoxia Differentially Affects Chondrogenic Differentiation of Progenitor Cells from Different Origins

Affiliations
  • 1Normandy University, UNICAEN, EA 7451 BioConnecT, Caen, France
  • 2Fédération Hospitalo Universitaire SURFACE, Amiens, Caen, France
  • 3Service de chirurgie Maxillo-faciale, CHU de Caen, Caen, France
  • 4Clinique Saint Martin, Service de Chirurgie Orthopédique, Caen, France
  • 5Service ORL et chirurgie cervico-faciale, CHU de Caen, Caen, France

Abstract

Background and Objectives
Ear cartilage malformations are commonly encountered problems in reconstructive surgery, since cartilage has low self-regenerating capacity. Malformations that impose psychological and social burden on one’s life are currently treated using ear prosthesis, synthetic implants or autologous flaps from rib cartilage. These approaches are challenging because not only they request high surgical expertise, but also they lack flexibility and induce severe donor-site morbidity. Through the last decade, tissue engineering gained attention where it aims at regenerating human tissues or organs in order to restore normal functions. This technique consists of three main elements, cells, growth factors, and above all, a scaffold that supports cells and guides their behavior. Several studies have investigated different scaffolds prepared from both synthetic or natural materials and their effects on cellular differentiation and behavior.
Methods and Results
In this study, we investigated a natural scaffold (alginate) as tridimensional hydrogel seeded with progenitors from different origins such as bone marrow, perichondrium and dental pulp. In contact with the scaffold, these cells remained viable and were able to differentiate into chondrocytes when cultured in vitro. Quantitative and qualitative results show the presence of different chondrogenic markers as well as elastic ones for the purpose of ear cartilage, upon different culture conditions.
Conclusions
We confirmed that auricular perichondrial cells outperform other cells to produce chondrogenic tissue in normal oxygen levels and we report for the first time the effect of hypoxia on these cells. Our results provide updates for cartilage engineering for future clinical applications.

Keyword

Chondrogenesis; Stem cells; Cartilage engineering; Hypoxia

Figure

  • Fig. 1 Multilineage differentiation potential of human progenitors. The trilineage differentiation of AuP, DPSC and NsP were carried out by Alizarin red (a∼c), oil red O (d∼f), and alcian blue (g∼i), respectively. (j∼l): Bright field images of the cells. These results were compared to a control (Supplementary Fig. S1). Scale 500 μm.

  • Fig. 2 Production of GAGs and glycoproteins after 2 weeks of culture. Safranin O and alcian blue staining were respectively performed for illustrating the positive production of proteoglycans (red) and glycosaminogly-cans (blue) in bone marrow-derived mesenchymal stem cells (BMMSC) a, e, i, m, auricular perichondrocytes (AuP) b, f, j, n dental stem cells (DPSC) c, g, k, o, and nasal perichondrocytes (NsP) d, h, l, p, encapsulated in 3D alginate microsphere in normoxic and hypoxic conditions, respectively, after 2 weeks of culture in chondrogenic medium (scale bar 500 μm).

  • Fig. 3 Expression of cartilage genes in four different cell sources in Normoxic and hypoxic environments. RT-PCR analysis were performed to examine cartilaginous markers in 4 different cell lines in normoxic and hypoxic conditions. The expression of these markers was compared to the average of the 3 housekeeping genes. *p<0.05, **p<0.01, ***p<0.005.

  • Fig. 4 Immunohistochemistry of ELN, COL II and ACAN in presence and absence of oxygen tension. (A) Negative control was illustrated where primary antibody was replaced by PBS (a∼c). (B∼D) Type 2 collagen, aggrecan and elastin expression was detected in auricular perichondrocytes and bone marrow-derived mesenchymal stem cells in presence of high (a∼c, g∼i) and low oxygen tension (d∼f, j∼l), respectively (scale bar 200 μm).


Reference

References

1. Wernheden E, Krogerus C, Andersen PS, Hesselfeldt-Nielsen J. 2019; Congenital anomalies of the external ear. Ugeskr Laeger. 181:V05190300. Danish.
2. Firmin F, Marchac A. 2011; A novel algorithm for autologous ear reconstruction. Semin Plast Surg. 25:257–264. DOI: 10.1055/s-0031-1288917. PMCID: PMC3312152.
Article
3. Yang HC, Cho HH, Jo SY, Jang CH, Cho YB. 2015; Donor-site morbidity following minimally invasive costal cartilage harvest technique. Clin Exp Otorhinolaryngol. 8:13–19. DOI: 10.3342/ceo.2015.8.1.13. PMID: 25729490. PMCID: PMC4338086.
Article
4. Li XS, Sun JJ. 2019; Regenerative medicine of tissue engineering: auricular cartilage regeneration and functional reconstruction. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 33:567–571. Chinese.
5. Bernstein JL, Cohen BP, Lin A, Harper A, Bonassar LJ, Spector JA. 2018; Tissue engineering auricular cartilage using late passage human auricular chondrocytes. Ann Plast Surg. 80(4 Suppl 4):S168–S173. DOI: 10.1097/SAP.0000000000001400. PMID: 29537998. PMCID: PMC5910223.
Article
6. Cohen BP, Hooper RC, Puetzer JL, Nordberg R, Asanbe O, Hernandez KA, Spector JA, Bonassar LJ. 2016; Long-term morphological and microarchitectural stability of tissue-engineered, patient-specific auricles in vivo. Tissue Eng Part A. 22:461–468. DOI: 10.1089/ten.tea.2015.0323. PMID: 26847742. PMCID: PMC4800266.
Article
7. Kim H, Bae C, Kook YM, Koh WG, Lee K, Park MH. 2019; Mesenchymal stem cell 3D encapsulation technologies for biomimetic microenvironment in tissue regeneration. Stem Cell Res Ther. 10:51. DOI: 10.1186/s13287-018-1130-8. PMID: 30732645. PMCID: PMC6367797.
Article
8. Yang W, Chen Q, Xia R, Zhang Y, Shuai L, Lai J, You X, Jiang Y, Bie P, Zhang L, Zhang H, Bai L. 2018; A novel bioscaffold with naturally-occurring extracellular matrix promotes hepatocyte survival and vessel patency in mouse models of heterologous transplantation. Biomaterials. 177:52–66. DOI: 10.1016/j.biomaterials.2018.05.026. PMID: 29885586.
Article
9. Gentile P, Ghione C, Ferreira AM, Crawford A, Hatton PV. 2017; Alginate-based hydrogels functionalised at the nanoscale using layer-by-layer assembly for potential cartilage repair. Biomater Sci. 5:1922–1931. DOI: 10.1039/C7BM00525C. PMID: 28752866.
Article
10. Visscher DO, Gleadall A, Buskermolen JK, Burla F, Segal J, Koenderink GH, Helder MN, van Zuijlen PPM. 2019; Design and fabrication of a hybrid alginate hydrogel/poly(ε-caprolactone) mold for auricular cartilage reconstruction. J Biomed Mater Res B Appl Biomater. 107:1711–1721. DOI: 10.1002/jbm.b.34264. PMID: 30383916. PMCID: PMC6587956.
Article
11. Duval E, Baugé C, Andriamanalijaona R, Bénateau H, Leclercq S, Dutoit S, Poulain L, Galéra P, Boumédiene K. 2012; Molecular mechanism of hypoxia-induced chondrogenesis and its application in in vivo cartilage tissue engineering. Biomaterials. 33:6042–6051. DOI: 10.1016/j.biomaterials.2012.04.061. PMID: 22677190.
Article
12. Bae HC, Park HJ, Wang SY, Yang HR, Lee MC, Han HS. 2018; Hypoxic condition enhances chondrogenesis in synovium-derived mesenchymal stem cells. Biomater Res. 22:28. DOI: 10.1186/s40824-018-0134-x. PMID: 30275971. PMCID: PMC6158840.
Article
13. Foyt DA, Taheem DK, Ferreira SA, Norman MDA, Petzold J, Jell G, Grigoriadis AE, Gentleman E. 2019; Hypoxia impacts human MSC response to substrate stiffness during chondrogenic differentiation. Acta Biomater. 89:73–83. DOI: 10.1016/j.actbio.2019.03.002. PMID: 30844569. PMCID: PMC6481516.
Article
14. Schnabel M, Marlovits S, Eckhoff G, Fichtel I, Gotzen L, Vécsei V, Schlegel J. 2002; Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis Cartilage. 10:62–70. DOI: 10.1053/joca.2001.0482. PMID: 11795984.
Article
15. Khatab S, Leijs MJ, van Buul G, Haeck J, Kops N, Nieboer M, Bos PK, Verhaar JAN, Bernsen M, van Osch GJVM. 2020; MSC encapsulation in alginate microcapsules prolongs survival after intra-articular injection, a longitudinal in vivo cell and bead integrity tracking study. Cell Biol Toxicol. 36:553–570. DOI: 10.1007/s10565-020-09532-6. PMID: 32474743. PMCID: PMC7661423.
Article
16. Kobayashi S, Takebe T, Zheng YW, Mizuno M, Yabuki Y, Maegawa J, Taniguchi H. 2011; Presence of cartilage stem/progenitor cells in adult mice auricular perichondrium. PLoS One. 6:e26393. DOI: 10.1371/journal.pone.0026393. PMID: 22039478. PMCID: PMC3198405.
Article
17. Togo T, Utani A, Naitoh M, Ohta M, Tsuji Y, Morikawa N, Nakamura M, Suzuki S. 2006; Identification of cartilage progenitor cells in the adult ear perichondrium: utilization for cartilage reconstruction. Lab Invest. 86:445–457. DOI: 10.1038/labinvest.3700409. PMID: 16625212.
Article
18. Xue K, Zhang X, Qi L, Zhou J, Liu K. 2016; Isolation, identification, and comparison of cartilage stem progenitor/cells from auricular cartilage and perichondrium. Am J Transl Res. 8:732–741.
19. Derks M, Sturm T, Haverich A, Hilfiker A. 2013; Isolation and chondrogenic differentiation of porcine perichondrial progenitor cells for the purpose of cartilage tissue engineering. Cells Tissues Organs. 198:179–189. DOI: 10.1159/000354897. PMID: 24157487.
Article
20. Kagimoto S, Takebe T, Kobayashi S, Yabuki Y, Hori A, Hirotomi K, Mikami T, Uemura T, Maegawa J, Taniguchi H. 2016; Autotransplantation of monkey ear perichondrium-deri-ved progenitor cells for cartilage reconstruction. Cell Transplant. 25:951–962. DOI: 10.3727/096368916X690917. PMID: 26884211.
Article
21. Zhang Y, Feng G, Xu G, Qi Y. 2019; Microporous acellular extracellular matrix combined with adipose-derived stem cell sheets as a promising tissue patch promoting articular cartilage regeneration and interface integration. Cytotherapy. 21:856–869. DOI: 10.1016/j.jcyt.2019.02.005. PMID: 31196819.
Article
22. Nemeth CL, Janebodin K, Yuan AE, Dennis JE, Reyes M, Kim DH. 2014; Enhanced chondrogenic differentiation of dental pulp stem cells using nanopatterned PEG-GelMA-HA hydrogels. Tissue Eng Part A. 20:2817–2829. DOI: 10.1089/ten.tea.2013.0614. PMID: 24749806. PMCID: PMC4229712.
Article
23. Talaat W, Aryal Ac S, Al Kawas S, Samsudin ABR, Kandile NG, Harding DRK, Ghoneim MM, Zeiada W, Jagal J, Aboelnaga A, Haider M. 2020; Nanoscale thermosensitive hydrogel scaffolds promote the chondrogenic differentiation of dental pulp stem and progenitor cells: a minimally invasive approach for cartilage regeneration. Int J Nanomedicine. 15:7775–7789. DOI: 10.2147/IJN.S274418. PMID: 33116500. PMCID: PMC7567564.
24. Fernandes TL, Shimomura K, Asperti A, Pinheiro CCG, Caetano HVA, Oliveira CRGCM, Nakamura N, Hernandez AJ, Bueno DF. 2018; Development of a novel large animal model to evaluate human dental pulp stem cells for articular cartilage treatment. Stem Cell Rev Rep. 14:734–743. DOI: 10.1007/s12015-018-9820-2. PMID: 29728886. PMCID: PMC6132738.
Article
25. Longoni A, Utomo L, van Hooijdonk IE, Bittermann GK, Vetter VC, Kruijt Spanjer EC, Ross J, Rosenberg AJ, Gawlitta D. 2020; The chondrogenic differentiation potential of dental pulp stem cells. Eur Cell Mater. 39:121–135. DOI: 10.22203/eCM.v039a08. PMID: 32083715.
Article
26. Mumme M, Barbero A, Miot S, Wixmerten A, Feliciano S, Wolf F, Asnaghi AM, Baumhoer D, Bieri O, Kretzschmar M, Pagenstert G, Haug M, Schaefer DJ, Martin I, Jakob M. 2016; Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial. Lancet. 388:1985–1994. DOI: 10.1016/S0140-6736(16)31658-0. PMID: 27789021.
Article
27. Li T, Chen S, Pei M. 2020; Contribution of neural crest-derived stem cells and nasal chondrocytes to articular cartilage regeneration. Cell Mol Life Sci. 77:4847–4859. DOI: 10.1007/s00018-020-03567-y. PMID: 32504256. PMCID: PMC9150440.
Article
28. do Amaral RJ, Pedrosa Cda S, Kochem MC, Silva KR, Aniceto M, Claudio-da-Silva C, Borojevic R, Baptista LS. 2012; Isolation of human nasoseptal chondrogenic cells: a promise for cartilage engineering. Stem Cell Res. 8:292–299. DOI: 10.1016/j.scr.2011.09.006. PMID: 22099383.
Article
29. Asnaghi MA, Power L, Barbero A, Haug M, Köppl R, Wendt D, Martin I. 2020; Biomarker signatures of quality for engineering nasal chondrocyte-derived cartilage. Front Bioeng Biotechnol. 8:283. DOI: 10.3389/fbioe.2020.00283. PMID: 32318561. PMCID: PMC7154140.
Article
30. Ma T, Grayson WL, Fröhlich M, Vunjak-Novakovic G. 2009; Hypoxia and stem cell-based engineering of mesenchymal tissues. Biotechnol Prog. 25:32–42. DOI: 10.1002/btpr.128. PMID: 19198002. PMCID: PMC2771546.
Article
31. Robins JC, Akeno N, Mukherjee A, Dalal RR, Aronow BJ, Koopman P, Clemens TL. 2005; Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9. Bone. 37:313–322. DOI: 10.1016/j.bone.2005.04.040. PMID: 16023419.
Article
32. Chen C, Huang K, Zhu J, Bi Y, Wang L, Jiang J, Zhu T, Yan X, Zhao J. 2020; A novel elastic and controlled-release poly (ether-ester-urethane)urea scaffold for cartilage regeneration. J Mater Chem B. 8:4106–4121. DOI: 10.1039/C9TB02754H. PMID: 32253395.
Article
33. Weizel A, Distler T, Schneidereit D, Friedrich O, Bräuer L, Paulsen F, Detsch R, Boccaccini AR, Budday S, Seitz H. 2020; Complex mechanical behavior of human articular cartilage and hydrogels for cartilage repair. Acta Biomater. 118:113–128. DOI: 10.1016/j.actbio.2020.10.025. PMID: 33080391.
Article
34. Andriamanalijaona R, Duval E, Raoudi M, Lecourt S, Vilquin JT, Marolleau JP, Pujol JP, Galera P, Boumediene K. 2008; Differentiation potential of human muscle-derived cells towards chondrogenic phenotype in alginate beads culture. Osteoarthritis Cartilage. 16:1509–1518. DOI: 10.1016/j.joca.2008.04.018. PMID: 18554936.
Article
35. Cai X, Lin Y, Ou G, Luo E, Man Y, Yuan Q, Gong P. 2007; Ectopic osteogenesis and chondrogenesis of bone marrow stromal stem cells in alginate system. Cell Biol Int. 31:776–783. DOI: 10.1016/j.cellbi.2007.01.011. PMID: 17324591.
Article
36. Wu YN, Yang Z, Hui JH, Ouyang HW, Lee EH. 2007; Cartilaginous ECM component-modification of the micro-bead culture system for chondrogenic differentiation of mesenchymal stem cells. Biomaterials. 28:4056–4067. DOI: 10.1016/j.biomaterials.2007.05.039. PMID: 17590431.
Article
37. Estes BT, Wu AW, Guilak F. 2006; Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis Rheum. 54:1222–1232. DOI: 10.1002/art.21779. PMID: 16572454.
Article
38. Majumdar MK, Banks V, Peluso DP, Morris EA. 2000; Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J Cell Physiol. 185:98–106. DOI: 10.1002/1097-4652(200010)185:1<98::AID-JCP9>3.0.CO;2-1. PMID: 10942523.
Article
39. Otto IA, Levato R, Webb WR, Khan IM, Breugem CC, Malda J. 2018; Progenitor cells in auricular cartilage demonstrate cartilage-forming capacity in 3D hydrogel culture. Eur Cell Mater. 35:132–150. DOI: 10.22203/eCM.v035a10. PMID: 29485180.
Article
40. Hellingman CA, Verwiel ET, Slagt I, Koevoet W, Poublon RM, Nolst-Trenité GJ, Baatenburg de Jong RJ, Jahr H, van Osch GJ. 2011; Differences in cartilage-forming capacity of expanded human chondrocytes from ear and nose and their gene expression profiles. Cell Transplant. 20:925–940. DOI: 10.3727/096368910X539119. PMID: 21054934.
Article
41. Fernandes TL, Cortez de SantAnna JP, Frisene I, Gazarini JP, Gomes Pinheiro CC, Gomoll AH, Lattermann C, Hernandez AJ, Franco Bueno D. 2020; Systematic review of human dental pulp stem cells for cartilage regeneration. Tissue Eng Part B Rev. 26:1–12. DOI: 10.1089/ten.teb.2019.0140. PMID: 31744404.
Article
42. Mata M, Milian L, Oliver M, Zurriaga J, Sancho-Tello M, de Llano JJM, Carda C. 2017; In vivo articular cartilage regene-ration using human dental pulp stem cells cultured in an alginate scaffold: a preliminary study. Stem Cells Int. 2017:8309256. DOI: 10.1155/2017/8309256. PMID: 28951745. PMCID: PMC5603743.
43. Westin CB, Trinca RB, Zuliani C, Coimbra IB, Moraes ÂM. 2017; Differentiation of dental pulp stem cells into chondrocytes upon culture on porous chitosan-xanthan scaffolds in the presence of kartogenin. Mater Sci Eng C Mater Biol Appl. 80:594–602. DOI: 10.1016/j.msec.2017.07.005. PMID: 28866206.
Article
44. Novais A, Lesieur J, Sadoine J, Slimani L, Baroukh B, Saubaméa B, Schmitt A, Vital S, Poliard A, Hélary C, Rochefort GY, Chaussain C, Gorin C. 2019; Priming dental pulp stem cells from human exfoliated deciduous teeth with fibroblast growth factor-2 enhances mineralization within tissue-engineered constructs implanted in craniofacial bone defects. Stem Cells Transl Med. 8:844–857. DOI: 10.1002/sctm.18-0182. PMID: 31016898. PMCID: PMC6646701.
Article
45. Wang F, Hu Y, He D, Zhou G, Yang X, Ellis E 3rd. 2017; Regeneration of subcutaneous tissue-engineered mandibular condyle in nude mice. J Craniomaxillofac Surg. 45:855–861. DOI: 10.1016/j.jcms.2017.03.017. PMID: 28462782.
Article
46. Ito K, Matsuoka K, Matsuzaka K, Morinaga K, Inoue T. 2015; Hypoxic condition promotes differentiation and mineralization of dental pulp cells in vivo. Int Endod J. 48:115–123. DOI: 10.1111/iej.12288. PMID: 24661255.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr