1. Vinciguerra M, Romiti S, Fattouch K, De Bellis A, Greco E. Atherosclerosis as pathogenetic substrate for Sars-Cov2 cytokine storm. J Clin Med. 2020; 9(7):2095.
https://doi.org/10.3390/jcm9072095.
Article
4. Capotosto L, Massoni F, De Sio S, Ricci S, Vitarelli A. Early diagnosis of cardiovascular diseases in workers: role of standard and advanced echocardiography. Biomed Res Int. 2018; 2018:7354691.
https://doi.org/10.1155/2018/7354691.
Article
7. Karthick K, Aruna SK, Samikannu R, Kuppusamy R, Teekaraman Y, Thelkar AR. Implementation of a heart disease risk prediction model using machine learning. Comput Math Methods Med. 2022; 2022:6517716.
https://doi.org/10.1155/2022/6517716.
Article
8. Chen Z, Yang M, Wen Y, Jiang S, Liu W, Huang H. Prediction of atherosclerosis using machine learning based on operations research. Math Biosci Eng. 2022; 19(5):4892–910.
https://doi.org/10.3934/mbe.2022229.
Article
10. Fan J, Chen M, Luo J, Yang S, Shi J, Yao Q, et al. The prediction of asymptomatic carotid atherosclerosis with electronic health records: a comparative study of six machine learning models. BMC Med Inform Decis Mak. 2021; 21(1):115.
https://doi.org/10.1186/s12911-021-01480-3.
Article
11. Ward A, Sarraju A, Chung S, Li J, Harrington R, Heidenreich P, et al. Machine learning and atherosclerotic cardiovascular disease risk prediction in a multiethnic population. NPJ Digit Med. 2020; 3:125.
https://doi.org/10.1038/s41746-020-00331-1.
Article
13. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In : Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016 Apr 13–17; San Francisco, CA. p. 785–94.
https://doi.org/10.1145/2939672.2939785.
Article
14. Frizzell JD, Liang L, Schulte PJ, Yancy CW, Heidenreich PA, Hernandez AF, et al. Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: comparison of machine learning and other statistical approaches. JAMA Cardiol. 2017; 2(2):204–9.
https://doi.org/10.1001/jamacardio.2016.3956.
Article
16. Lundberg SM, Lee SI. A unified approach to interpreting model predictions. Adv Neural Inf Process Syst. 2017; 30:4765–74.
18. Johnson A, Cooper GF, Visweswaran S. A novel personalized random forest algorithm for clinical outcome prediction. Stud Health Technol Inform. 2022; 290:248–52.
https://doi.org/10.3233/SHTI220072.
Article
19. Absar N, Das EK, Shoma SN, Khandaker MU, Miraz MH, Faruque MR, et al. The efficacy of machine-learning-supported smart system for heart disease prediction. Healthcare (Basel). 2022; 10(6):1137.
https://doi.org/10.3390/healthcare10061137.
Article
21. Su X, Xu Y, Tan Z, Wang X, Yang P, Su Y, et al. Prediction for cardiovascular diseases based on laboratory data: an analysis of random forest model. J Clin Lab Anal. 2020; 34(9):e23421.
https://doi.org/10.1002/jcla.23421.
Article
22. Cao J, Zhang L, Ma L, Zhou X, Yang B, Wang W. Study on the risk of coronary heart disease in middle-aged and young people based on machine learning methods: a retrospective cohort study. PeerJ. 2022; 10:e14078.
https://doi.org/10.7717/peerj.14078.
Article
23. Mahesh TR, Dhilip Kumar V, Vinoth Kumar V, Asghar J, Geman O, Arulkumaran G, et al. AdaBoost ensemble methods using k-fold cross validation for survivability with the early detection of heart disease. Comput Intell Neurosci. 2022; 2022:9005278.
https://doi.org/10.1155/2022/9005278.
Article
25. He S, Qu L, He X, Zhang D, Xie N. Comparative evaluation of 15-minute rapid diagnosis of ischemic heart disease by high-sensitivity quantification of cardiac biomarkers. Exp Ther Med. 2020; 20(2):1702–8.
https://doi.org/10.3892/etm.2020.8853.
Article
26. Lu S, Chen R, Wei W, Belovsky M, Lu X. Understanding heart failure patients EHR clinical features via SHAP interpretation of tree-based machine learning model predictions. AMIA Annu Symp Proc. 2022; 2021:813–22.
28. Wang K, Tian J, Zheng C, Yang H, Ren J, Liu Y, et al. Interpretable prediction of 3-year all-cause mortality in patients with heart failure caused by coronary heart disease based on machine learning and SHAP. Comput Biol Med. 2021; 137:104813.
https://doi.org/10.1016/j.compbiomed.2021.104813.
Article
29. Lee G, Choi S, Kim K, Yun JM, Son JS, Jeong SM, et al. Association of hemoglobin concentration and its change with cardiovascular and all-cause mortality. J Am Heart Assoc. 2018; 7(3):e007723.
https://doi.org/10.1161/JAHA.117.007723.
Article