5. de Duve C, Pressman BC, Gianetto R, Wattiaux R, Appelmans F. 1955; Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 60:604–617. DOI:
10.1042/bj0600604. PMID:
13249955. PMCID:
PMC1216159.
Article
13. Wie J, Liu Z, Song H, Tropea TF, Yang L, Wang H, Liang Y, Cang C, Aranda K, Lohmann J, Yang J, Lu B, Chen-Plotkin AS, Luk KC, Ren D. 2021; A growth-factor-activated lysosomal K
+ channel regulates Parkinson's pathology. Nature. 591:431–437. Erratum in:
Nature. 2021;592:E10. DOI:
10.1038/s41586-021-03185-z. PMID:
33505021. PMCID:
PMC7979525.
Article
18. Yogalingam G, Luu AR, Prill H, Lo MJ, Yip B, Holtzinger J, Christianson T, Aoyagi-Scharber M, Lawrence R, Crawford BE, LeBowitz JH. 2019; BMN 250, a fusion of lysosomal alpha-N-acetylglucosaminidase with IGF2, exhibits different patterns of cellular uptake into critical cell types of Sanfilippo syndrome B disease pathogenesis. PLoS One. 14:e0207836. DOI:
10.1371/journal.pone.0207836. PMID:
30657762. PMCID:
PMC6338363. PMID:
61f67561557e43deb10bf75caf69b046.
Article
20. Liu B, Palmfeldt J, Lin L, Colaço A, Clemmensen KKB, Huang J, Xu F, Liu X, Maeda K, Luo Y, Jäättelä M. 2018; STAT3 associates with vacuolar H
+-ATPase and regulates cytosolic and lysosomal pH. Cell Res. 28:996–1012. DOI:
10.1038/s41422-018-0080-0. PMID:
30127373. PMCID:
PMC6170402.
Article
21. Lloyd-Lewis B, Krueger CC, Sargeant TJ, D'Angelo ME, Deery MJ, Feret R, Howard JA, Lilley KS, Watson CJ. 2018; Stat3-mediated alterations in lysosomal membrane protein composition. J Biol Chem. 293:4244–4261. DOI:
10.1074/jbc.RA118.001777. PMID:
29343516. PMCID:
PMC5868265.
Article
22. Liu B, Chen R, Zhang Y, Huang J, Luo Y, Rosthøj S, Zhao C, Jäättelä M. 2023; Cationic amphiphilic antihistamines inhibit STAT3 via Ca
2+-dependent lysosomal H
+ efflux. Cell Rep. 42:112137. DOI:
10.1016/j.celrep.2023.112137. PMID:
36807142. PMCID:
PMC9989825.
23. Zhang CS, Jiang B, Li M, Zhu M, Peng Y, Zhang YL, Wu YQ, Li TY, Liang Y, Lu Z, Lian G, Liu Q, Guo H, Yin Z, Ye Z, Han J, Wu JW, Yin H, Lin SY, Lin SC. 2014; The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab. 20:526–540. DOI:
10.1016/j.cmet.2014.06.014. PMID:
25002183.
Article
24. Wang F, Gómez-Sintes R, Boya P. 2018; Lysosomal membrane permeabilization and cell death. Traffic. 19:918–931. DOI:
10.1111/tra.12613. PMID:
30125440.
Article
26. Chadha R, Meador-Woodruff JH. 2020; Downregulated AKT-mTOR signaling pathway proteins in dorsolateral prefrontal cortex in Schizophrenia. Neuropsychopharmacology. 45:1059–1067. DOI:
10.1038/s41386-020-0614-2. PMID:
31952070. PMCID:
PMC7162985.
Article
28. Ishizuka Y, Kakiya N, Witters LA, Oshiro N, Shirao T, Nawa H, Takei N. 2013; AMP-activated protein kinase counteracts brain-derived neurotrophic factor-induced mammalian target of rapamycin complex 1 signaling in neurons. J Neurochem. 127:66–77. DOI:
10.1111/jnc.12362. PMID:
23841933.
Article
29. Dalle Pezze P, Ruf S, Sonntag AG, Langelaar-Makkinje M, Hall P, Heberle AM, Razquin Navas P, van Eunen K, Tölle RC, Schwarz JJ, Wiese H, Warscheid B, Deitersen J, Stork B, Fäßler E, Schäuble S, Hahn U, Horvatovich P, Shanley DP, Thedieck K. 2016; A systems study reveals concurrent activation of AMPK and mTOR by amino acids. Nat Commun. 7:13254. DOI:
10.1038/ncomms13254. PMID:
27869123. PMCID:
PMC5121333. PMID:
4a285de016fb4d67ada2a43c868dc313.
Article
36. Altuzar J, Notbohm J, Stein F, Haberkant P, Hempelmann P, Heybrock S, Worsch J, Saftig P, Höglinger D. 2023; Lysosome-targeted multifunctional lipid probes reveal the sterol transporter NPC1 as a sphingosine interactor. Proc Natl Acad Sci U S A. 120:e2213886120. DOI:
10.1073/pnas.2213886120. PMID:
36893262.
Article
38. Patel S, Ramakrishnan L, Rahman T, Hamdoun A, Marchant JS, Taylor CW, Brailoiu E. 2011; The endo-lysosomal system as an NAADP-sensitive acidic Ca(2+) store: role for the two-pore channels. Cell Calcium. 50:157–167. DOI:
10.1016/j.ceca.2011.03.011. PMID:
21529939. PMCID:
PMC3160778.
Article
39. Yuan Y, Jaślan D, Rahman T, Bolsover SR, Arige V, Wagner LE 2nd, Abrahamian C, Tang R, Keller M, Hartmann J, Rosato AS, Weiden EM, Bracher F, Yule DI, Grimm C, Patel S. 2022; Segregated cation flux by TPC2 biases Ca
2+ signaling through lysosomes. Nat Commun. 13:4481. DOI:
10.1038/s41467-022-31959-0. PMID:
35918320. PMCID:
PMC9346130. PMID:
db6d7bc0a8014e758a1eca79b88380fb.
40. Lagostena L, Festa M, Pusch M, Carpaneto A. 2017; The human two-pore channel 1 is modulated by cytosolic and luminal calcium. Sci Rep. 7:43900. DOI:
10.1038/srep43900. PMID:
28252105. PMCID:
PMC5333365.
Article
41. Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, Tang J, Rietdorf K, Teboul L, Chuang KT, Lin P, Xiao R, Wang C, Zhu Y, Lin Y, Wyatt CN, Parrington J, Ma J, Evans AM, Galione A, et al. 2009; NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature. 459:596–600. DOI:
10.1038/nature08030. PMID:
19387438. PMCID:
PMC2761823.
Article
42. Cang C, Zhou Y, Navarro B, Seo YJ, Aranda K, Shi L, Battaglia-Hsu S, Nissim I, Clapham DE, Ren D. 2013; mTOR regulates lysosomal ATP-sensitive two-pore Na(+) channels to adapt to metabolic state. Cell. 152:778–790. DOI:
10.1016/j.cell.2013.01.023. PMID:
23394946. PMCID:
PMC3908667.
Article
43. Wang X, Zhang X, Dong XP, Samie M, Li X, Cheng X, Goschka A, Shen D, Zhou Y, Harlow J, Zhu MX, Clapham DE, Ren D, Xu H. 2012; TPC proteins are phosphoinositide- activated sodium-selective ion channels in endosomes and lysosomes. Cell. 151:372–383. DOI:
10.1016/j.cell.2012.08.036. PMID:
23063126. PMCID:
PMC3475186.
Article
44. She J, Guo J, Chen Q, Zeng W, Jiang Y, Bai XC. 2018; Structural insights into the voltage and phospholipid activation of the mammalian TPC1 channel. Nature. 556:130–134. DOI:
10.1038/nature26139. PMID:
29562233. PMCID:
PMC5886804.
Article
45. Patel S, Yuan Y, Gunaratne GS, Rahman T, Marchant JS. 2022; Activation of endo-lysosomal two-pore channels by NAADP and PI(3,5)P
2. Five things to know. Cell Calcium. 103:102543. DOI:
10.1016/j.ceca.2022.102543. PMID:
35123238. PMCID:
PMC9552313.
46. Russell T, Gangotia D, Barry G. 2022; Assessing the potential of repurposing ion channel inhibitors to treat emerging viral diseases and the role of this host factor in virus replication. Biomed Pharmacother. 156:113850. DOI:
10.1016/j.biopha.2022.113850. PMID:
36411658.
Article
49. Castonguay J, Orth JHC, Müller T, Sleman F, Grimm C, Wahl-Schott C, Biel M, Mallmann RT, Bildl W, Schulte U, Klugbauer N. 2017; The two-pore channel TPC1 is required for efficient protein processing through early and recycling endosomes. Sci Rep. 7:10038. DOI:
10.1038/s41598-017-10607-4. PMID:
28855648. PMCID:
PMC5577145.
Article
51. Penny CJ, Vassileva K, Jha A, Yuan Y, Chee X, Yates E, Mazzon M, Kilpatrick BS, Muallem S, Marsh M, Rahman T, Patel S. 2019; Mining of Ebola virus entry inhibitors identifies approved drugs as two-pore channel pore blockers. Biochim Biophys Acta Mol Cell Res. 1866:1151–1161. DOI:
10.1016/j.bbamcr.2018.10.022. PMID:
30408544. PMCID:
PMC7114365.
Article
52. Heister PM, Poston RN. 2020; Pharmacological hypothesis: TPC2 antagonist tetrandrine as a potential therapeutic agent for COVID-19. Pharmacol Res Perspect. 8:e00653. DOI:
10.1002/prp2.653. PMID:
32930523. PMCID:
PMC7503088.
Article
53. Lin PH, Duann P, Komazaki S, Park KH, Li H, Sun M, Sermersheim M, Gumpper K, Parrington J, Galione A, Evans AM, Zhu MX, Ma J. 2015; Lysosomal two-pore channel subtype 2 (TPC2) regulates skeletal muscle autophagic signaling. J Biol Chem. 290:3377–3389. DOI:
10.1074/jbc.M114.608471. PMID:
25480788. PMCID:
PMC4319008.
Article
54. Grimm C, Holdt LM, Chen CC, Hassan S, Müller C, Jörs S, Cuny H, Kissing S, Schröder B, Butz E, Northoff B, Castonguay J, Luber CA, Moser M, Spahn S, Lüllmann-Rauch R, Fendel C, Klugbauer N, Griesbeck O, Haas A, et al. 2014; High susceptibility to fatty liver disease in two-pore channel 2-deficient mice. Nat Commun. 5:4699. DOI:
10.1038/ncomms5699. PMID:
25144390.
Article
56. Sakurai Y, Kolokoltsov AA, Chen CC, Tidwell MW, Bauta WE, Klugbauer N, Grimm C, Wahl-Schott C, Biel M, Davey RA. 2015; Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science. 347:995–998. DOI:
10.1126/science.1258758. PMID:
25722412. PMCID:
PMC4550587.
Article
57. Gerndt S, Krogsaeter E, Patel S, Bracher F, Grimm C. 2020; Discovery of lipophilic two-pore channel agonists. FEBS J. 287:5284–5293. DOI:
10.1111/febs.15432. PMID:
32478984.
Article
58. Chapel A, Kieffer-Jaquinod S, Sagné C, Verdon Q, Ivaldi C, Mellal M, Thirion J, Jadot M, Bruley C, Garin J, Gasnier B, Journet A. 2013; An extended proteome map of the lysosomal membrane reveals novel potential transporters. Mol Cell Proteomics. 12:1572–1588. DOI:
10.1074/mcp.M112.021980. PMID:
23436907. PMCID:
PMC3675815.
Article
60. Chia R, Sabir MS, Bandres-Ciga S, Saez-Atienzar S, Reynolds RH, Gustavsson E, Walton RL, Ahmed S, Viollet C, Ding J, Makarious MB, Diez-Fairen M, Portley MK, Shah Z, Abramzon Y, Hernandez DG, Blauwendraat C, Stone DJ, Eicher J, Parkkinen L, et al. 2021; Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nat Genet. 53:294–303. DOI:
10.1038/s41588-021-00785-3. PMID:
33589841. PMCID:
PMC7946812.
61. Jinn S, Drolet RE, Cramer PE, Wong AH, Toolan DM, Gretzula CA, Voleti B, Vassileva G, Disa J, Tadin-Strapps M, Stone DJ. 2017; TMEM175 deficiency impairs lysosomal and mitochondrial function and increases α-synuclein aggregation. Proc Natl Acad Sci U S A. 114:2389–2394. DOI:
10.1073/pnas.1616332114. PMID:
28193887. PMCID:
PMC5338534.
Article
62. Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, DeStefano AL, Kara E, Bras J, Sharma M, Schulte C, Keller MF, Arepalli S, Letson C, Edsall C, Stefansson H, Liu X, Pliner H, Lee JH, Cheng R, et al. International Parkinson's Disease Genomics Consortium (IPDGC). Parkinson's Study Group (PSG) Parkinson's Research: The Organized GENetics Initiative (PROGENI). 23andMe. GenePD. NeuroGenetics Research Consortium (NGRC). Hussman Institute of Human Genomics (HIHG). Ashkenazi Jewish Dataset Investigator. Cohorts for Health and Aging Research in Genetic Epidemiology (CHARGE). North American Brain Expression Consortium (NABEC). United Kingdom Brain Expression Consortium (UKBEC). Greek Parkinson's Disease Consortium. Alzheimer Genetic Analysis Group. 2014; Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nat Genet. 46:989–993. DOI:
10.1038/ng.3043. PMID:
25064009. PMCID:
PMC4146673.
Article
63. Hopfner F, Mueller SH, Szymczak S, Junge O, Tittmann L, May S, Lohmann K, Grallert H, Lieb W, Strauch K, Müller-Nurasyid M, Berger K, Schormair B, Winkelmann J, Mollenhauer B, Trenkwalder C, Maetzler W, Berg D, Kasten M, Klein C, et al. 2020; Rare variants in specific lysosomal genes are associated with Parkinson's disease. Mov Disord. 35:1245–1248. DOI:
10.1002/mds.28037. PMID:
32267580.
Article
65. Iwaki H, Blauwendraat C, Leonard HL, Liu G, Maple-Grødem J, Corvol JC, Pihlstrøm L, van Nimwegen M, Hutten SJ, Nguyen KH, Rick J, Eberly S, Faghri F, Auinger P, Scott KM, Wijeyekoon R, Van Deerlin VM, Hernandez DG, Day-Williams AG, Brice A, et al. 2019; Genetic risk of Parkinson disease and progression: an analysis of 13 longitudinal cohorts. Neurol Genet. 5:e348. Erratum in:
Neurol Genet. 2019;5:e354. DOI:
10.1212/NXG.0000000000000348. PMID:
31404238. PMCID:
PMC6659137.
66. Ge L, Hoa NT, Wilson Z, Arismendi-Morillo G, Kong XT, Tajhya RB, Beeton C, Jadus MR. 2014; Big Potassium (BK) ion channels in biology, disease and possible targets for cancer immunotherapy. Int Immunopharmacol. 22:427–443. DOI:
10.1016/j.intimp.2014.06.040. PMID:
25027630. PMCID:
PMC5472047.
Article
67. Cao Q, Zhong XZ, Zou Y, Zhang Z, Toro L, Dong XP. 2015; BK channels alleviate lysosomal storage diseases by providing positive feedback regulation of lysosomal Ca2+ release. Dev Cell. 33:427–441. DOI:
10.1016/j.devcel.2015.04.010. PMID:
25982675.
Article
74. Li M, Zhang WK, Benvin NM, Zhou X, Su D, Li H, Wang S, Michailidis IE, Tong L, Li X, Yang J. 2017; Structural basis of dual Ca
2+/pH regulation of the endolysosomal TRPML1 channel. Nat Struct Mol Biol. 24:205–213. DOI:
10.1038/nsmb.3362. PMID:
28112729. PMCID:
PMC5336481.
Article
75. Venkatachalam K, Hofmann T, Montell C. 2006; Lysosomal localization of TRPML3 depends on TRPML2 and the mucolipidosis-associated protein TRPML1. J Biol Chem. 281:17517–17527. DOI:
10.1074/jbc.M600807200. PMID:
16606612. PMCID:
PMC4196876.
Article
77. Dong XP, Cheng X, Mills E, Delling M, Wang F, Kurz T, Xu H. 2008; The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature. 455:992–996. DOI:
10.1038/nature07311. PMID:
18794901. PMCID:
PMC4301259.
Article
78. Dong XP, Shen D, Wang X, Dawson T, Li X, Zhang Q, Cheng X, Zhang Y, Weisman LS, Delling M, Xu H. 2010; PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca(2+) release channels in the endolysosome. Nat Commun. 1:38. DOI:
10.1038/ncomms1037. PMID:
20802798. PMCID:
PMC2928581.
Article
79. Soyombo AA, Tjon-Kon-Sang S, Rbaibi Y, Bashllari E, Bisceglia J, Muallem S, Kiselyov K. 2006; TRP-ML1 regulates lysosomal pH and acidic lysosomal lipid hydrolytic activity. J Biol Chem. 281:7294–7301. DOI:
10.1074/jbc.M508211200. PMID:
16361256.
Article
80. Samie MA, Grimm C, Evans JA, Curcio-Morelli C, Heller S, Slaugenhaupt SA, Cuajungco MP. 2009; The tissue-specific expression of TRPML2 (MCOLN-2) gene is influenced by the presence of TRPML1. Pflugers Arch. 459:79–91. DOI:
10.1007/s00424-009-0716-5. PMID:
19763610. PMCID:
PMC2913554.
Article
83. Hirschi M, Herzik MA Jr, Wie J, Suo Y, Borschel WF, Ren D, Lander GC, Lee SY. 2017; Cryo-electron microscopy structure of the lysosomal calcium-permeable channel TRPML3. Nature. 550:411–414. DOI:
10.1038/nature24055. PMID:
29019979. PMCID:
PMC5762132.
Article
84. Kim HJ, Li Q, Tjon-Kon-Sang S, So I, Kiselyov K, Soyombo AA, Muallem S. 2008; A novel mode of TRPML3 regulation by extracytosolic pH absent in the varitint-waddler phenotype. EMBO J. 27:1197–1205. DOI:
10.1038/emboj.2008.56. PMID:
18369318. PMCID:
PMC2367400.
Article
86. Choi S, Kim HJ. 2014; The Ca2+ channel TRPML3 specifically interacts with the mammalian ATG8 homologue GATE16 to regulate autophagy. Biochem Biophys Res Commun. 443:56–61. DOI:
10.1016/j.bbrc.2013.11.044. PMID:
24269818.
Article
87. Kim SW, Kim DH, Park KS, Kim MK, Park YM, Muallem S, So I, Kim HJ. 2019; Palmitoylation controls trafficking of the intracellular Ca
2+ channel MCOLN3/TRPML3 to regulate autophagy. Autophagy. 15:327–340. DOI:
10.1080/15548627.2018.1518671. PMID:
30215288. PMCID:
PMC6333453.
Article
89. Grimm C, Cuajungco MP, van Aken AF, Schnee M, Jörs S, Kros CJ, Ricci AJ, Heller S. 2007; A helix-breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitint-waddler mouse. Proc Natl Acad Sci U S A. 104:19583–19588. DOI:
10.1073/pnas.0709846104. PMID:
18048323. PMCID:
PMC2148332.
Article
92. Kornak U, Kasper D, Bösl MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling G, Jentsch TJ. 2001; Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell. 104:205–215. DOI:
10.1016/S0092-8674(01)00206-9. PMID:
11207362.
Article
93. Kasper D, Planells-Cases R, Fuhrmann JC, Scheel O, Zeitz O, Ruether K, Schmitt A, Poët M, Steinfeld R, Schweizer M, Kornak U, Jentsch TJ. 2005; Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J. 24:1079–1091. DOI:
10.1038/sj.emboj.7600576. PMID:
15706348. PMCID:
PMC554126.
Article
95. Stauber T, Weinert S, Jentsch TJ. 2012; Cell biology and physiology of CLC chloride channels and transporters. Compr Physiol. 2:1701–1744. DOI:
10.1002/cphy.c110038. PMID:
23723021.
Article
96. Bergsdorf EY, Zdebik AA, Jentsch TJ. 2009; Residues important for nitrate/proton coupling in plant and mammalian CLC transporters. J Biol Chem. 284:11184–11193. DOI:
10.1074/jbc.M901170200. PMID:
19261613. PMCID:
PMC2670123.
Article
98. Lange PF, Wartosch L, Jentsch TJ, Fuhrmann JC. 2006; ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature. 440:220–223. DOI:
10.1038/nature04535. PMID:
16525474.
Article
100. Chalhoub N, Benachenhou N, Rajapurohitam V, Pata M, Ferron M, Frattini A, Villa A, Vacher J. 2003; Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat Med. 9:399–406. DOI:
10.1038/nm842. PMID:
12627228.
Article
101. Leisle L, Ludwig CF, Wagner FA, Jentsch TJ, Stauber T. 2011; ClC-7 is a slowly voltage-gated 2Cl(-)/1H(+)-exchanger and requires Ostm1 for transport activity. EMBO J. 30:2140–2152. DOI:
10.1038/emboj.2011.137. PMID:
21527911. PMCID:
PMC3117652.
102. Wu JZ, Zeziulia M, Kwon W, Jentsch TJ, Grinstein S, Freeman SA. 2023; ClC-7 drives intraphagosomal chloride accumulation to support hydrolase activity and phagosome resolution. J Cell Biol. 222:e202208155. DOI:
10.1083/jcb.202208155. PMID:
37010469.
Article
104. Klaus F, Laufer J, Czarkowski K, Strutz-Seebohm N, Seebohm G, Lang F. 2009; PIKfyve-dependent regulation of the Cl- channel ClC-2. Biochem Biophys Res Commun. 381:407–411. DOI:
10.1016/j.bbrc.2009.02.053. PMID:
19232516.
Article
106. Kroemer G, Jäättelä M. 2005; Lysosomes and autophagy in cell death control. Nat Rev Cancer. 5:886–897. DOI:
10.1038/nrc1738. PMID:
16239905.
Article
107. Hwang J, Estick CM, Ikonne US, Butler D, Pait MC, Elliott LH, Ruiz S, Smith K, Rentschler KM, Mundell C, Almeida MF, Stumbling Bear N, Locklear JP, Abumohsen Y, Ivey CM, Farizatto KLG, Bahr BA. 2019; The role of lysosomes in a broad disease-modifying approach evaluated across transgenic mouse models of Alzheimer's disease and Parkinson's disease and models of mild cognitive impairment. Int J Mol Sci. 20:4432. DOI:
10.3390/ijms20184432. PMID:
31505809. PMCID:
PMC6770842. PMID:
55c4732172c64b61960ce84245284300.
Article
109. Wiwatpanit T, Remis NN, Ahmad A, Zhou Y, Clancy JC, Cheatham MA, García-Añoveros J. 2018; Codeficiency of lysosomal mucolipins 3 and 1 in cochlear hair cells diminishes outer hair cell longevity and accelerates age-related hearing loss. J Neurosci. 38:3177–3189. DOI:
10.1523/JNEUROSCI.3368-17.2018. PMID:
29453205. PMCID:
PMC5884457.
Article
113. Barnett BS, Ziegler K, Doblin R, Carlo AD. 2022; Is psychedelic use associated with cancer?: interrogating a half-century-old claim using contemporary population-level data. J Psychopharmacol. 36:1118–1128. DOI:
10.1177/02698811221117536. PMID:
35971893.
Article
114. Ng PY, Ribet ABP, Guo Q, Mullin BH, Tan JWY, Landao-Bassonga E, Stephens S, Chen K, Yuan J, Abudulai L, Bollen M, Nguyen ETTT, Kular J, Papadimitriou JM, Søe K, Teasdale RD, Xu J, Parton RG, Takayanagi H, Pavlos NJ. 2023; Sugar transporter Slc37a2 regulates bone metabolism in mice via a tubular lysosomal network in osteoclasts. Nat Commun. 14:906. DOI:
10.1038/s41467-023-36484-2. PMID:
36810735. PMCID:
PMC9945426. PMID:
cfbfda3751ad47868d62c17e221301bd.
Article
115. Larsen LE, van den Boogert MAW, Rios-Ocampo WA, Jansen JC, Conlon D, Chong PLE, Levels JHM, Eilers RE, Sachdev VV, Zelcer N, Raabe T, He M, Hand NJ, Drenth JPH, Rader DJ, Stroes ESG, Lefeber DJ, Jonker JW, Holleboom AG. 2022; Defective lipid droplet-lysosome interaction causes fatty liver disease as evidenced by human mutations in TMEM199 and CCDC115. Cell Mol Gastroenterol Hepatol. 13:583–597. DOI:
10.1016/j.jcmgh.2021.09.013. PMID:
34626841. PMCID:
PMC8688563.
Article
117. Zhao Z, Qin P, Huang YW. 2021; Lysosomal ion channels involved in cellular entry and uncoating of enveloped viruses: implications for therapeutic strategies against SARS-CoV-2. Cell Calcium. 94:102360. DOI:
10.1016/j.ceca.2021.102360. PMID:
33516131. PMCID:
PMC7825922.
Article
120. Vacca F, Vossio S, Mercier V, Moreau D, Johnson S, Scott CC, Montoya JP, Moniatte M, Gruenberg J. 2019; Cyclodextrin triggers MCOLN1-dependent endo-lysosome secretion in Niemann-Pick type C cells. J Lipid Res. 60:832–843. DOI:
10.1194/jlr.M089979. PMID:
30709900. PMCID:
PMC6446697.
Article
121. Gibson PG, Qin L, Puah SH. 2020; COVID-19 acute respiratory distress syndrome (ARDS): clinical features and differences from typical pre-COVID-19 ARDS. Med J Aust. 213:54–56.e1. DOI:
10.5694/mja2.50674. PMID:
32572965. PMCID:
PMC7361309.
Article
122. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, et al. 2020; Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 395:497–506. Erratum in:
Lancet. 2020 Jan 30. DOI:
10.1016/S0140-6736(20)30183-5. PMID:
31986264.
Article
123. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, et al. 2020; A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 579:270–273. Erratum in:
Nature. 2020;588:E6. DOI:
10.1038/s41586-020-2951-z. PMID:
33199918. PMCID:
PMC9744119.
Article
127. Arlt E, Fraticelli M, Tsvilovskyy V, Nadolni W, Breit A, O'Neill TJ, Resenberger S, Wennemuth G, Wahl-Schott C, Biel M, Grimm C, Freichel M, Gudermann T, Klugbauer N, Boekhoff I, Zierler S. 2020; TPC1 deficiency or blockade augments systemic anaphylaxis and mast cell activity. Proc Natl Acad Sci U S A. 117:18068–18078. DOI:
10.1073/pnas.1920122117. PMID:
32661165. PMCID:
PMC7395440.
Article
128. Scotto Rosato A, Krogsaeter EK, Jaślan D, Abrahamian C, Montefusco S, Soldati C, Spix B, Pizzo MT, Grieco G, Böck J, Wyatt A, Wünkhaus D, Passon M, Stieglitz M, Keller M, Hermey G, Markmann S, Gruber-Schoffnegger D, Cotman S, Johannes L, et al. 2022; TPC2 rescues lysosomal storage in mucolipidosis type IV, Niemann-Pick type C1, and Batten disease. EMBO Mol Med. 14:e15377. DOI:
10.15252/emmm.202115377. PMID:
35929194. PMCID:
PMC9449600. PMID:
81fb1739060044f693962704d333fab5.
Article
129. Du X, Carvalho-de-Souza JL, Wei C, Carrasquel-Ursulaez W, Lorenzo Y, Gonzalez N, Kubota T, Staisch J, Hain T, Petrossian N, Xu M, Latorre R, Bezanilla F, Gomez CM. 2020; Loss-of-function BK channel mutation causes impaired mitochondria and progressive cerebellar ataxia. Proc Natl Acad Sci U S A. 117:6023–6034. DOI:
10.1073/pnas.1920008117. PMID:
32132200. PMCID:
PMC7084159.
Article
132. Caldeira da Silva CC, Cerqueira FM, Barbosa LF, Medeiros MH, Kowaltowski AJ. 2008; Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity. Aging Cell. 7:552–560. DOI:
10.1111/j.1474-9726.2008.00407.x. PMID:
18505478.
Article
133. Donida B, Marchetti DP, Biancini GB, Deon M, Manini PR, da Rosa HT, Moura DJ, Saffi J, Bender F, Burin MG, Coitinho AS, Giugliani R, Vargas CR. 2015; Oxidative stress and inflammation in mucopolysaccharidosis type IVA patients treated with enzyme replacement therapy. Biochim Biophys Acta. 1852:1012–1019. DOI:
10.1016/j.bbadis.2015.02.004. PMID:
25701642.
Article
134. Teixeira CA, Miranda CO, Sousa VF, Santos TE, Malheiro AR, Solomon M, Maegawa GH, Brites P, Sousa MM. 2014; Early axonal loss accompanied by impaired endocytosis, abnormal axonal transport, and decreased microtubule stability occur in the model of Krabbe's disease. Neurobiol Dis. 66:92–103. DOI:
10.1016/j.nbd.2014.02.012. PMID:
24607884. PMCID:
PMC4307018.
Article
137. Zhang X, Chen W, Gao Q, Yang J, Yan X, Zhao H, Su L, Yang M, Gao C, Yao Y, Inoki K, Li D, Shao R, Wang S, Sahoo N, Kudo F, Eguchi T, Ruan B, Xu H. 2019; Rapamycin directly activates lysosomal mucolipin TRP channels independent of mTOR. PLoS Biol. 17:e3000252. DOI:
10.1371/journal.pbio.3000252. PMID:
31112550. PMCID:
PMC6528971. PMID:
7572bdcdbb8b4629856919a744d68590.
Article