Korean J Physiol Pharmacol.  2023 Jul;27(4):299-310. 10.4196/kjpp.2023.27.4.299.

Experimental model and novel therapeutic targets for non-alcoholic fatty liver disease development

Affiliations
  • 1College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Korea

Abstract

Non-alcoholic fatty liver disease (NAFLD) is a complex disorder characterized by the accumulation of fat in the liver in the absence of excessive alcohol consumption. It is one of the most common liver diseases worldwide, affecting approximately 25% of the global population. It is closely associated with obesity, type 2 diabetes, and metabolic syndrome. Moreover, NAFLD can progress to non-alcoholic steatohepatitis, which can cause liver cirrhosis, liver failure, and hepatocellular carcinoma. Currently, there are no approved drugs for the treatment of NAFLD. Therefore, the development of effective drugs is essential for NAFLD treatment. In this article, we discuss the experimental models and novel therapeutic targets for NAFLD. Additionally, we propose new strategies for the development of drugs for NAFLD.

Keyword

Drug targeting; Hepatitis; Metabolic syndrome; Non-alcoholic fatty liver disease

Figure

  • Fig. 1 Pathogenesis of non-alcoholic fatty liver disease (NAFLD) progression. Various factors including hyperglycemia, hyperlipidemia, and insulin resistance signaling pathways are involved in the NAFL and NASH progression by accelerating the inflammatory signaling pathway and its mediated apoptosis. Additionally, continuous activities NAFLD involved into accumulating of liver fibrosis and genetic exchange. Finally, hepatocarcinoma was activated and patients need to surgical treatment. NAFL, non-alcoholic fatty liver; NASH, non-alcoholic steatohepatitis.

  • Fig. 2 Mechanisms of inflammation on NAFLD progression. (A) TNF-α or LPS activates each receptor, such as TNFR and LPS4 or 9, leading to increase NF-κB phosphorylation through the activation of MAPK, STAT3, JNK, or AMPK expression. Additionally, the production of reactive oxygen species (ROS) contributes to mitochondrial dysfunction and inflammasome activation, which in turn accelerate IL-1β maturation and secretion. (B) miR-34a inhibited MAPK-mediated NF-κB phosphorylation via activation of TLR4, which is triggered by LPS or high-glucose levels. Besides, NF-κB-mediated TNF-α induction activates its receptor and activated inflammatory signaling pathway. However, this signaling pathway is inactivated by miR-125b/TRNAIP3-mediated TNF-α receptor ubiquitination. In addition, IL-6 secretion by NF-κB activation increased phosphorylation of STAT3 and activated miR-233-enriched exosome which was source of IL-6 over production. Accelerated inflammatory signaling pathway induced PERK-mediated eIF2α phosphorylation suppressed by miR-26a and miR-26a suppressed eIF2α-activated NF-κB p65 translocation into nucleus. Moreover, high-glucose activated IRS-1/AKT signaling pathway and FOXO3 that suppressed by miR-122-5p activation. (C) The environment of the intestine and liver is closely linked to the disruption of gut microbiota, which can be induced by dysregulation of diets. Briefly, LPS secreted by disruption of gut microbiota increased gut inflammation through inactivating AMPK/PPARβ/δ mechanisms. Moreover, dephosphorylation of AMPK-mediated PPARα suppression caused by disruption of gut microbiota increased PGC1α-mediated lipid metabolisms and induced liver steatosis. In addition, activation of PPARγ stabilized cellular homeostasis through induction of IL-10 and iNOS mRNA expression. Furthermore, LPS comes from dysfunction of gut microbiota activated TLR4-mediated NF-κB signaling pathway in hepatocyte through blood flow in portal vein. NAFLD, non-alcoholic fatty liver disease; TNF-α, tumor necrosis factor-α; NF-κB, nuclear factor of kappa photopolypeptide enhancer; MAPK, mitogen-activated protein kinase; STAT3, signal transducer and activator of transcription 3; AMPK, AMP-activated protein kinase; IL, interleukin; TLR, toll-like receptor; IRS-1, insulin receptor substrate 1; PPAR, peroxisome proliferator-activated receptor; PGC1α, PPARγ coactivator-1α; iNOS, inducible nitric oxide synthase; ER, endoplasmic reticulum; HFD, high-fat diet; FFA, free fatty acid.

  • Fig. 3 Mechanisms of apoptosis in NAFLD patient. Liver apoptosis plays several roles in NAFLD progression. Factors such as high glucose levels or cellular dysfunction, including reactive oxygen species (ROS) production, ROS-mediated mitochondrial dysfunction, and endoplasmic reticulum (ER) stress signaling pathways, contribute to the expression of Bax. Mechanistically, PERK-mediated CHOP expression induced Bax mRNA expression, which is one of inducers on mitochondrial dysfunction-mediated apoptosis signaling pathway. After mitochondrial dysfunction occurs cytochrome C releasement required caspase-3 and cleaved PARP ex-pression. In addition, damaged mitochondria produce mtROS and mtROS activated STING/IRF3 phosphorylation-mediated BAX mRNA expression. In addition, complex with SRSF6 and DRAK2 induced abnormal mRNA production of Polg2, Rnasel, and Nme4 and its abnormal form induced mitochondrial dysfunction-mediated hepatocyte apoptosis. Moreover, AMPK activation sup-pressed cleaved caspase-6-mediated apoptosis signaling pathway. NAFLD, non-alcoholic fatty liver disease; CHOP, c/EBP homologous protein; mtROS, mitochondrial ROS; STING, stimulator of interferon gene; IRF3, interferon regulatory factor 3; AMPK, AMP-activated protein kinase.


Reference

1. Gray ME, Bae S, Ramachandran R, Baldwin N, VanWagner LB, Jacobs DR Jr, Terry JG, Shikany JM. 2022; Dietary patterns and prevalent NAFLD at year 25 from the coronary artery risk development in young adults (CARDIA) study. Nutrients. 14:854. DOI: 10.3390/nu14040854. PMID: 35215504. PMCID: PMC8878386. PMID: 4c852c79ea4c437aac7c4088fabc4aa6.
Article
2. Polyzos SA, Kountouras J, Mantzoros CS. 2019; Obesity and nonalcoholic fatty liver disease: from pathophysiology to therapeutics. Metabolism. 92:82–97. DOI: 10.1016/j.metabol.2018.11.014. PMID: 30502373.
Article
3. Ter Horst KW, Serlie MJ. 2017; Fructose consumption, lipogenesis, and non-alcoholic fatty liver disease. Nutrients. 9:981. DOI: 10.3390/nu9090981. PMID: 28878197. PMCID: PMC5622741. PMID: 68026d13ef864dd8a97f831d2ab271a0.
Article
4. Kumar S, Duan Q, Wu R, Harris EN, Su Q. 2021; Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis. Adv Drug Deliv Rev. 176:113869. DOI: 10.1016/j.addr.2021.113869. PMID: 34280515.
Article
5. Tanase DM, Gosav EM, Costea CF, Ciocoiu M, Lacatusu CM, Maranduca MA, Ouatu A, Floria M. 2020; The intricate relationship between type 2 diabetes mellitus (T2DM), insulin resistance (IR), and nonalcoholic fatty liver disease (NAFLD). J Diabetes Res. 2020:3920196. DOI: 10.1155/2020/3920196. PMID: 32832560. PMCID: PMC7424491. PMID: 5534b2bacae74a2dba72bf5cc5ba90ef.
Article
6. Ioannou GN. 2021; Epidemiology and risk-stratification of NAFLD-associated HCC. J Hepatol. 75:1476–1484. DOI: 10.1016/j.jhep.2021.08.012. PMID: 34453963.
Article
7. Shabalala SC, Dludla PV, Mabasa L, Kappo AP, Basson AK, Pheiffer C, Johnson R. 2020; The effect of adiponectin in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and the potential role of polyphenols in the modulation of adiponectin signaling. Biomed Pharmacother. 131:110785. DOI: 10.1016/j.biopha.2020.110785. PMID: 33152943.
Article
8. Abdel-Bakky MS, Helal GK, El-Sayed EM, Amin E, Alqasoumi A, Alhowail A, Abdelmoti ESS, Saad AS. 2021; Loss of RAR-α and RXR-α and enhanced caspase-3-dependent apoptosis in N-acetyl-p-aminophenol-induced liver injury in mice is tissue factor dependent. Korean J Physiol Pharmacol. 25:385–393. DOI: 10.4196/kjpp.2021.25.5.385. PMID: 34448456. PMCID: PMC8405435.
Article
9. Gong G, Zhao R, Zhu Y, Yu J, Wei B, Xu Y, Cui Z, Liang G. 2021; Gastroprotective effect of cirsilineol against hydrochloric acid/ethanol-induced gastric ulcer in rats. Korean J Physiol Pharmacol. 25:403–411. DOI: 10.4196/kjpp.2021.25.5.403. PMID: 34448458. PMCID: PMC8405436.
Article
10. Martínez-Chantar ML, Delgado TC, Beraza N. 2021; Revisiting the role of natural killer cells in non-alcoholic fatty liver disease. Front Immunol. 12:640869. DOI: 10.3389/fimmu.2021.640869. PMID: 33679803. PMCID: PMC7930075. PMID: f20ecdd332db4413bf44156c12a70c46.
Article
11. Hundertmark J, Krenkel O, Tacke F. 2018; Adapted immune responses of myeloid-derived cells in fatty liver disease. Front Immunol. 9:2418. DOI: 10.3389/fimmu.2018.02418. PMID: 30405618. PMCID: PMC6200865. PMID: a7dbc75d5dd54e3b85c2fdbf219d55a7.
Article
12. Puengel T, Liu H, Guillot A, Heymann F, Tacke F, Peiseler M. 2022; Nuclear receptors linking metabolism, inflammation, and fibrosis in nonalcoholic fatty liver disease. Int J Mol Sci. 23:2668. DOI: 10.3390/ijms23052668. PMID: 35269812. PMCID: PMC8910763. PMID: 3bd012ba53de463bb8d3570ead664810.
Article
13. Peng C, Stewart AG, Woodman OL, Ritchie RH, Qin CX. 2020; Non-alcoholic steatohepatitis: a review of its mechanism, models and medical treatments. Front Pharmacol. 11:603926. DOI: 10.3389/fphar.2020.603926. PMID: 33343375. PMCID: PMC7745178. PMID: 2dc08ed0b09742598ac9467466fe05ab.
Article
14. Márquez-Quiroga LV, Arellanes-Robledo J, Vásquez-Garzón VR, Villa-Treviño S, Muriel P. 2022; Models of nonalcoholic steatohepatitis potentiated by chemical inducers leading to hepatocellular carcinoma. Biochem Pharmacol. 195:114845. DOI: 10.1016/j.bcp.2021.114845. PMID: 34801522.
Article
15. Feng M, Liu F, Xing J, Zhong Y, Zhou X. 2021; Anemarrhena saponins attenuate insulin resistance in rats with high-fat diet-induced obesity via the IRS-1/PI3K/AKT pathway. J Ethnopharmacol. 277:114251. DOI: 10.1016/j.jep.2021.114251. PMID: 34052350.
Article
16. Marengo A, Rosso C, Bugianesi E. 2016; Liver cancer: connections with obesity, fatty liver, and cirrhosis. Annu Rev Med. 67:103–117. DOI: 10.1146/annurev-med-090514-013832. PMID: 26473416.
Article
17. Chyau CC, Wang HF, Zhang WJ, Chen CC, Huang SH, Chang CC, Peng RY. 2020; Antrodan alleviates high-fat and high-fructose diet-induced fatty liver disease in C57BL/6 mice model via AMPK/Sirt1/SREBP-1c/PPARγ pathway. Int J Mol Sci. 21:360. DOI: 10.3390/ijms21010360. PMID: 31935815. PMCID: PMC6981486. PMID: 4f4399ffc2aa42f9af8d7a805e316974.
Article
18. Zheng T, Yang X, Li W, Wang Q, Chen L, Wu D, Bian F, Xing S, Jin S. 2018; Salidroside attenuates high-fat diet-induced nonalcoholic fatty liver disease via AMPK-dependent TXNIP/NLRP3 pathway. Oxid Med Cell Longev. 2018:8597897. DOI: 10.1155/2018/8597897. PMID: 30140371. PMCID: PMC6081551.
Article
19. Softic S, Stanhope KL, Boucher J, Divanovic S, Lanaspa MA, Johnson RJ, Kahn CR. 2020; Fructose and hepatic insulin resistance. Crit Rev Clin Lab Sci. 57:308–322. DOI: 10.1080/10408363.2019.1711360. PMID: 31935149. PMCID: PMC7774304.
Article
20. Tsuchida T, Lee YA, Fujiwara N, Ybanez M, Allen B, Martins S, Fiel MI, Goossens N, Chou HI, Hoshida Y, Friedman SL. 2018; A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. J Hepatol. 69:385–395. Erratum in: J Hepatol. 2018;69:988. DOI: 10.1016/j.jhep.2018.07.010. PMID: 30082074.
Article
21. Im YR, Hunter H, de Gracia Hahn D, Duret A, Cheah Q, Dong J, Fairey M, Hjalmarsson C, Li A, Lim HK, McKeown L, Mitrofan CG, Rao R, Utukuri M, Rowe IA, Mann JP. 2021; A systematic review of animal models of NAFLD finds high-fat, high-fructose diets most closely resemble human NAFLD. Hepatology. 74:1884–1901. DOI: 10.1002/hep.31897. PMID: 33973269.
Article
22. Segal-Salto M, Barashi N, Katav A, Edelshtein V, Aharon A, Hashmueli S, George J, Maor Y, Pinzani M, Haberman D, Hall A, Friedman S, Mor A. 2020; A blocking monoclonal antibody to CCL24 alleviates liver fibrosis and inflammation in experimental models of liver damage. JHEP Rep. 2:100064. DOI: 10.1016/j.jhepr.2019.100064. PMID: 32039405. PMCID: PMC7005554.
Article
23. Parlati L, Régnier M, Guillou H, Postic C. 2021; New targets for NAFLD. JHEP Rep. 3:100346. DOI: 10.1016/j.jhepr.2021.100346. PMID: 34667947. PMCID: PMC8507191.
Article
24. Li X, Wang TX, Huang X, Li Y, Sun T, Zang S, Guan KL, Xiong Y, Liu J, Yuan HX. 2020; Targeting ferroptosis alleviates methionine-choline deficient (MCD)-diet induced NASH by suppressing liver lipotoxicity. Liver Int. 40:1378–1394. DOI: 10.1111/liv.14428. PMID: 32145145.
Article
25. Stephenson K, Kennedy L, Hargrove L, Demieville J, Thomson J, Alpini G, Francis H. 2018; Updates on dietary models of nonalcoholic fatty liver disease: current studies and insights. Gene Expr. 18:5–17. DOI: 10.3727/105221617X15093707969658. PMID: 29096730. PMCID: PMC5860971.
Article
26. Deng M, Qu F, Chen L, Liu C, Zhang M, Ren F, Guo H, Zhang H, Ge S, Wu C, Zhao L. 2020; SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD. J Endocrinol. 245:425–437. DOI: 10.1530/JOE-20-0018. PMID: 32302970.
Article
27. Veskovic M, Mladenovic D, Milenkovic M, Tosic J, Borozan S, Gopcevic K, Labudovic-Borovic M, Dragutinovic V, Vucevic D, Jorgacevic B, Isakovic A, Trajkovic V, Radosavljevic T. 2019; Betaine modulates oxidative stress, inflammation, apoptosis, autophagy, and Akt/mTOR signaling in methionine-choline deficiency-induced fatty liver disease. Eur J Pharmacol. 848:39–48. DOI: 10.1016/j.ejphar.2019.01.043. PMID: 30689995.
Article
28. Zhao W, He C, Jiang J, Zhao Z, Yuan H, Wang F, Shen B. 2022; The role of discoid domain receptor 1 on renal tubular epithelial pyroptosis in diabetic nephropathy. Korean J Physiol Pharmacol. 26:427–438. DOI: 10.4196/kjpp.2022.26.6.427. PMID: 36302618. PMCID: PMC9614395.
Article
29. Morishita A, Tadokoro T, Fujihara S, Iwama H, Oura K, Fujita K, Tani J, Takuma K, Nakahara M, Shi T, Haba R, Okano K, Nishiyama A, Ono M, Himoto T, Masaki T. 2022; Ipragliflozin attenuates non-alcoholic steatohepatitis development in an animal model. PLoS One. 17:e0261310. DOI: 10.1371/journal.pone.0261310. PMID: 35192632. PMCID: PMC8863244. PMID: bf48577133404d54ac87805d0b6d9c74.
Article
30. Yoshimine Y, Uto H, Kumagai K, Mawatari S, Arima S, Ibusuki R, Mera K, Nosaki T, Kanmura S, Numata M, Tamai T, Moriuchi A, Tsubouchi H, Ido A. 2015; Hepatic expression of the Sptlc3 subunit of serine palmitoyltransferase is associated with the development of hepatocellular carcinoma in a mouse model of nonalcoholic steatohepatitis. Oncol Rep. 33:1657–1666. DOI: 10.3892/or.2015.3745. PMID: 25607821.
Article
31. Jin Y, Nguyen TLL, Myung CS, Heo KS. 2022; Ginsenoside Rh1 protects human endothelial cells against lipopolysaccharide-induced inflammatory injury through inhibiting TLR2/4-mediated STAT3, NF-κB, and ER stress signaling pathways. Life Sci. 309:120973. DOI: 10.1016/j.lfs.2022.120973. PMID: 36150463.
Article
32. Pawlak M, Lefebvre P, Staels B. 2015; Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 62:720–733. DOI: 10.1016/j.jhep.2014.10.039. PMID: 25450203.
Article
33. Van Nguyen D, Nguyen TLL, Jin Y, Kim L, Myung CS, Heo KS. 2022; 6'-Sialylactose abolished lipopolysaccharide-induced inflammation and hyper-permeability in endothelial cells. Arch Pharm Res. 45:836–848. DOI: 10.1007/s12272-022-01415-0. PMID: 36401777.
Article
34. Chen Z, Yu R, Xiong Y, Du F, Zhu S. 2017; A vicious circle between insulin resistance and inflammation in nonalcoholic fatty liver disease. Lipids Health Dis. 16:203. Erratum in: Lipids Health Dis. 2018; 17:33. DOI: 10.1186/s12944-017-0572-9. PMID: 29037210. PMCID: PMC5644081. PMID: affc31d5c7b746ebbc0d17caf6f1e363.
Article
35. Yan T, Wang H, Cao L, Wang Q, Takahashi S, Yagai T, Li G, Krausz KW, Wang G, Gonzalez FJ, Hao H. 2018; Glycyrrhizin alleviates nonalcoholic steatohepatitis via modulating bile acids and meta-inflammation. Drug Metab Dispos. 46:1310–1319. DOI: 10.1124/dmd.118.082008. PMID: 29959134. PMCID: PMC6081736.
Article
36. Li CX, Gao JG, Wan XY, Chen Y, Xu CF, Feng ZM, Zeng H, Lin YM, Ma H, Xu P, Yu CH, Li YM. 2019; Allyl isothiocyanate ameliorates lipid accumulation and inflammation in nonalcoholic fatty liver disease via the Sirt1/AMPK and NF-κB signaling pathways. World J Gastroenterol. 25:5120–5133. DOI: 10.3748/wjg.v25.i34.5120. PMID: 31558861. PMCID: PMC6747284.
Article
37. Diniz TA, de Lima Junior EA, Teixeira AA, Biondo LA, da Rocha LAF, Valadão IC, Silveira LS, Cabral-Santos C, de Souza CO, Rosa Neto JC. 2021; Aerobic training improves NAFLD markers and insulin resistance through AMPK-PPAR-α signaling in obese mice. Life Sci. 266:118868. DOI: 10.1016/j.lfs.2020.118868. PMID: 33310034.
Article
38. Xiao Q, Zhang S, Yang C, Du R, Zhao J, Li J, Xu Y, Qin Y, Gao Y, Huang W. 2019; Ginsenoside Rg1 ameliorates palmitic acid-induced hepatic steatosis and inflammation in HepG2 cells via the AMPK/NF-κB pathway. Int J Endocrinol. 2019:7514802. DOI: 10.1155/2019/7514802. PMID: 31467529. PMCID: PMC6699274. PMID: 81c42df073804a37833110c45bb3fe67.
39. Nguyen TLL, Huynh DTN, Jin Y, Jeon H, Heo KS. 2021; Protective effects of ginsenoside-Rg2 and -Rh1 on liver function through inhibiting TAK1 and STAT3-mediated inflammatory activity and Nrf2/ARE-mediated antioxidant signaling pathway. Arch Pharm Res. 44:241–252. DOI: 10.1007/s12272-020-01304-4. PMID: 33537886.
Article
40. Zhu W, Sahar NE, Javaid HMA, Pak ES, Liang G, Wang Y, Ha H, Huh JY. 2021; Exercise-induced irisin decreases inflammation and improves NAFLD by competitive binding with MD2. Cells. 10:3306. DOI: 10.3390/cells10123306. PMID: 34943814. PMCID: PMC8699279. PMID: 72948fe9874b44a18ece0156762b6e01.
Article
41. Bai J, Liu F. 2019; The cGAS-cGAMP-STING pathway: a molecular link between immunity and metabolism. Diabetes. 68:1099–1108. DOI: 10.2337/dbi18-0052. PMID: 31109939. PMCID: PMC6610018.
Article
42. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. 2017; Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 9:7204–7218. DOI: 10.18632/oncotarget.23208. PMID: 29467962. PMCID: PMC5805548.
Article
43. Jin Y, Tangchang W, Kwon OS, Lee JY, Heo KS, Son HY. 2023; Ginsenoside Rh1 ameliorates the asthma and allergic inflammation via inhibiting Akt, MAPK, and NF-κB signaling pathways in vitro and in vivo. Life Sci. 321:121607. DOI: 10.1016/j.lfs.2023.121607. PMID: 36958436.
Article
44. Mohammed S, Nicklas EH, Thadathil N, Selvarani R, Royce GH, Kinter M, Richardson A, Deepa SS. 2021; Role of necroptosis in chronic hepatic inflammation and fibrosis in a mouse model of increased oxidative stress. Free Radic Biol Med. 164:315–328. DOI: 10.1016/j.freeradbiomed.2020.12.449. PMID: 33429022. PMCID: PMC8845573.
Article
45. Gaul S, Leszczynska A, Alegre F, Kaufmann B, Johnson CD, Adams LA, Wree A, Damm G, Seehofer D, Calvente CJ, Povero D, Kisseleva T, Eguchi A, McGeough MD, Hoffman HM, Pelegrin P, Laufs U, Feldstein AE. 2021; Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis. J Hepatol. 74:156–167. DOI: 10.1016/j.jhep.2020.07.041. PMID: 32763266. PMCID: PMC7749849.
Article
46. Jin Y, Huynh DTN, Nguyen TLL, Jeon H, Heo KS. 2020; Therapeutic effects of ginsenosides on breast cancer growth and metastasis. Arch Pharm Res. 43:773–787. DOI: 10.1007/s12272-020-01265-8. PMID: 32839835.
Article
47. Zhang Z, Moon R, Thorne JL, Moore JB. 2023; NAFLD and vitamin D: evidence for intersection of microRNA-regulated pathways. Nutr Res Rev. 36:120–139. DOI: 10.1017/S095442242100038X. PMID: 35109946.
Article
48. Zhang Q, Yu K, Cao Y, Luo Y, Liu Y, Zhao C. 2021; miR-125b promotes the NF-κB-mediated inflammatory response in NAFLD via directly targeting TNFAIP3. Life Sci. 270:119071. DOI: 10.1016/j.lfs.2021.119071. PMID: 33515562.
Article
49. Hu Y, Peng X, Du G, Zhang Z, Zhai Y, Xiong X, Luo X. 2022; MicroRNA-122-5p inhibition improves inflammation and oxidative stress damage in dietary-induced non-alcoholic fatty liver disease through targeting FOXO3. Front Physiol. 13:803445. DOI: 10.3389/fphys.2022.803445. PMID: 35222075. PMCID: PMC8874326. PMID: 8efcb73afd2f4735b6882b87c625e44f.
Article
50. Hou X, Yin S, Ren R, Liu S, Yong L, Liu Y, Li Y, Zheng MH, Kunos G, Gao B, Wang H. 2021; Myeloid-cell-specific IL-6 signaling promotes MicroRNA-223-enriched exosome production to attenuate NAFLD-associated fibrosis. Hepatology. 74:116–132. DOI: 10.1002/hep.31658. PMID: 33236445. PMCID: PMC8141545.
Article
51. Xu H, Tian Y, Tang D, Zou S, Liu G, Song J, Zhang G, Du X, Huang W, He B, Lin W, Jin L, Huang W, Yang J, Fu X. 2021; An endoplasmic reticulum stress-MicroRNA-26a feedback circuit in NAFLD. Hepatology. 73:1327–1345. DOI: 10.1002/hep.31428. PMID: 32567701.
Article
52. Torres LF, Cogliati B, Otton R. 2019; Green tea prevents NAFLD by modulation of miR-34a and miR-194 expression in a high-fat diet mouse model. Oxid Med Cell Longev. 2019:4168380. DOI: 10.1155/2019/4168380. PMID: 31885789. PMCID: PMC6914886.
Article
53. Zhao J, Wu Q, Yang T, Nie L, Liu S, Zhou J, Chen J, Jiang Z, Xiao T, Yang J, Chu C. 2022; Gaseous signal molecule SO2 regulates autophagy through PI3K/AKT pathway inhibits cardiomyocyte apoptosis and improves myocardial fibrosis in rats with type II diabetes. Korean J Physiol Pharmacol. 26:541–556. DOI: 10.4196/kjpp.2022.26.6.541. PMID: 36302628. PMCID: PMC9614393.
Article
54. Bashiardes S, Shapiro H, Rozin S, Shibolet O, Elinav E. 2016; Non-alcoholic fatty liver and the gut microbiota. Mol Metab. 5:782–794. DOI: 10.1016/j.molmet.2016.06.003. PMID: 27617201. PMCID: PMC5004228. PMID: 829f3bf9256c4ba982f5e506775f3123.
Article
55. Zhang X, Coker OO, Chu ES, Fu K, Lau HCH, Wang YX, Chan AWH, Wei H, Yang X, Sung JJY, Yu J. 2021; Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut. 70:761–774. DOI: 10.1136/gutjnl-2019-319664. PMID: 32694178. PMCID: PMC7948195.
Article
56. Behary J, Amorim N, Jiang XT, Raposo A, Gong L, McGovern E, Ibrahim R, Chu F, Stephens C, Jebeili H, Fragomeli V, Koay YC, Jackson M, O'Sullivan J, Weltman M, McCaughan G, El-Omar E, Zekry A. 2021; Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma. Nat Commun. 12:187. DOI: 10.1038/s41467-020-20422-7. PMID: 33420074. PMCID: PMC7794332. PMID: b2728d3b48ed45bd99530aeb278cdc20.
Article
57. Rubio C, Puerto M, García-Rodríquez JJ, Lu VB, García-Martínez I, Alén R, Sanmartín-Salinas P, Toledo-Lobo MV, Saiz J, Ruperez J, Barbas C, Menchén L, Gribble FM, Reimann F, Guijarro LG, Carrascosa JM, Valverde ÁM. 2020; Impact of global PTP1B deficiency on the gut barrier permeability during NASH in mice. Mol Metab. 35:100954. DOI: 10.1016/j.molmet.2020.01.018. PMID: 32244182. PMCID: PMC7082558.
Article
58. Wu L, Li J, Feng J, Ji J, Yu Q, Li Y, Zheng Y, Dai W, Wu J, Guo C. 2021; Crosstalk between PPARs and gut microbiota in NAFLD. Biomed Pharmacother. 136:111255. DOI: 10.1016/j.biopha.2021.111255. PMID: 33485064.
Article
59. Li DD, Ma JM, Li MJ, Gao LL, Fan YN, Zhang YN, Tao XJ, Yang JJ. 2022; Supplementation of Lycium barbarum polysaccharide combined with aerobic exercise ameliorates high-fat-induced nonalcoholic steatohepatitis via AMPK/PPARα/PGC-1α pathway. Nutrients. 14:3247. DOI: 10.3390/nu14153247. PMID: 35956423. PMCID: PMC9370707. PMID: c18581c6400246a5a032860682c13c9e.
Article
60. Yang H, Feng L, Xu L, Jiang D, Zhai F, Tong G, Xing Y. 2022; Intervention of Shugan Xiaozhi decoction on nonalcoholic fatty liver disease via mediating gut-liver axis. Biomed Res Int. 2022:4801695. DOI: 10.1155/2022/4801695. PMID: 35837380. PMCID: PMC9276511.
Article
61. Hasan AU, Rahman A, Kobori H. 2019; Interactions between host PPARs and gut microbiota in health and disease. Int J Mol Sci. 20:387. DOI: 10.3390/ijms20020387. PMID: 30658440. PMCID: PMC6359605. PMID: 6d20714c548246c983c10fa37922c936.
Article
62. Kanda T, Matsuoka S, Yamazaki M, Shibata T, Nirei K, Takahashi H, Kaneko T, Fujisawa M, Higuchi T, Nakamura H, Matsumoto N, Yamagami H, Ogawa M, Imazu H, Kuroda K, Moriyama M. 2018; Apoptosis and non-alcoholic fatty liver diseases. World J Gastroenterol. 24:2661–2672. DOI: 10.3748/wjg.v24.i25.2661. PMID: 29991872. PMCID: PMC6034146.
Article
63. Chang XM, Xiao F, Pan Q, Wang XX, Guo LX. 2021; Sitagliptin attenuates endothelial dysfunction independent of its blood glucose controlling effect. Korean J Physiol Pharmacol. 25:425–437. DOI: 10.4196/kjpp.2021.25.5.425. PMID: 34448460. PMCID: PMC8405439.
Article
64. Zhao P, Sun X, Chaggan C, Liao Z, In Wong K, He F, Singh S, Loomba R, Karin M, Witztum JL, Saltiel AR. 2020; An AMPK-caspase-6 axis controls liver damage in nonalcoholic steatohepatitis. Science. 367:652–660. DOI: 10.1126/science.aay0542. PMID: 32029622. PMCID: PMC8012106.
Article
65. Jeon H, Jin Y, Myung CS, Heo KS. 2021; Ginsenoside-Rg2 exerts anti-cancer effects through ROS-mediated AMPK activation associated mitochondrial damage and oxidation in MCF-7 cells. Arch Pharm Res. 44:702–712. DOI: 10.1007/s12272-021-01345-3. PMID: 34302638.
Article
66. Qiao JT, Cui C, Qing L, Wang LS, He TY, Yan F, Liu FQ, Shen YH, Hou XG, Chen L. 2018; Activation of the STING-IRF3 pathway promotes hepatocyte inflammation, apoptosis and induces metabolic disorders in nonalcoholic fatty liver disease. Metabolism. 81:13–24. DOI: 10.1016/j.metabol.2017.09.010. PMID: 29106945.
Article
67. Jin Y, Huynh DTN, Heo KS. 2022; Ginsenoside Rh1 inhibits tumor growth in MDA-MB-231 breast cancer cells via mitochondrial ROS and ER stress-mediated signaling pathway. Arch Pharm Res. 45:174–184. DOI: 10.1007/s12272-022-01377-3. PMID: 35325393.
Article
68. Li Y, Xu J, Lu Y, Bian H, Yang L, Wu H, Zhang X, Zhang B, Xiong M, Chang Y, Tang J, Yang F, Zhao L, Li J, Gao X, Xia M, Tan M, Li J. 2021; DRAK2 aggravates nonalcoholic fatty liver disease progression through SRSF6-associated RNA alternative splicing. Cell Metab. 33:2004–2020.e9. DOI: 10.1016/j.cmet.2021.09.008. PMID: 34614409.
Article
69. Nasiri-Ansari N, Nikolopoulou C, Papoutsi K, Kyrou I, Mantzoros CS, Kyriakopoulos G, Chatzigeorgiou A, Kalotychou V, Randeva MS, Chatha K, Kontzoglou K, Kaltsas G, Papavassiliou AG, Randeva HS, Kassi E. 2021; Empagliflozin attenuates non-alcoholic fatty liver disease (NAFLD) in high fat diet fed ApoE(-/-) mice by activating autophagy and reducing ER stress and apoptosis. Int J Mol Sci. 22:818. DOI: 10.3390/ijms22020818. PMID: 33467546. PMCID: PMC7829901. PMID: f967148ee656483cac3dae9949ce40ff.
Article
70. Pei K, Gui T, Kan D, Feng H, Jin Y, Yang Y, Zhang Q, Du Z, Gai Z, Wu J, Li Y. 2020; An overview of lipid metabolism and nonalcoholic fatty liver disease. Biomed Res Int. 2020:4020249. DOI: 10.1155/2020/4020249. PMID: 32733940. PMCID: PMC7383338.
Article
71. Prasomthong J, Limpeanchob N, Daodee S, Chonpathompikunlert P, Tunsophon S. 2022; Hibiscus sabdariffa extract improves hepatic steatosis, partially through IRS-1/Akt and Nrf2 signaling pathways in rats fed a high fat diet. Sci Rep. 12:7022. DOI: 10.1038/s41598-022-11027-9. PMID: 35487948. PMCID: PMC9054782. PMID: 82f7aaf0fccd429a97edf775230404b2.
Article
72. Li F, Ye J, Sun Y, Lin Y, Wu T, Shao C, Ma Q, Liao X, Feng S, Zhong B. 2021; Distinct dose-dependent association of free fatty acids with diabetes development in nonalcoholic fatty liver disease patients. Diabetes Metab J. 45:417–429. DOI: 10.4093/dmj.2020.0039. PMID: 33705650. PMCID: PMC8164943. PMID: 8bbe0bc385c949c8aabd39577c08e02b.
Article
73. Wang S, Jung S, Ko KS. 2022; Effects of amino acids supplementation on lipid and glucose metabolism in HepG2 cells. Nutrients. 14:3050. DOI: 10.3390/nu14153050. PMID: 35893906. PMCID: PMC9332103. PMID: 9f6073fa2e634f949e14d06940ce2a8f.
Article
74. Li R, Li Y, Yang X, Hu Y, Yu H, Li Y. 2022; Reducing VEGFB accelerates NAFLD and insulin resistance in mice via inhibiting AMPK signaling pathway. J Transl Med. 20:341. DOI: 10.1186/s12967-022-03540-2. PMID: 35907871. PMCID: PMC9338666. PMID: 147f4ab94a114d7490bbc87e88dc85d9.
Article
75. Xu B, Jiang M, Chu Y, Wang W, Chen D, Li X, Zhang Z, Zhang D, Fan D, Nie Y, Shao F, Wu K, Liang J. 2018; Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice. J Hepatol. 68:773–782. DOI: 10.1016/j.jhep.2017.11.040. PMID: 29273476.
Article
76. Todoric J, Di Caro G, Reibe S, Henstridge DC, Green CR, Vrbanac A, Ceteci F, Conche C, McNulty R, Shalapour S, Taniguchi K, Meikle PJ, Watrous JD, Moranchel R, Najhawan M, Jain M, Liu X, Kisseleva T, Diaz-Meco MT, Moscat J, et al. 2020; Fructose stimulated de novo lipogenesis is promoted by inflammation. Nat Metab. 2:1034–1045. DOI: 10.1038/s42255-020-0261-2. PMID: 32839596. PMCID: PMC8018782.
Article
77. Vasques-Monteiro IML, Silva-Veiga FM, Miranda CS, de Andrade Gonçalves ÉCB, Daleprane JB, Souza-Mello V. 2021; A rise in Proteobacteria is an indicator of gut-liver axis-mediated nonalcoholic fatty liver disease in high-fructose-fed adult mice. Nutr Res. 91:26–35. DOI: 10.1016/j.nutres.2021.04.008. PMID: 34130208.
Article
78. Daniel PV, Dogra S, Rawat P, Choubey A, Khan AS, Rajak S, Kamthan M, Mondal P. 2021; NF-κB p65 regulates hepatic lipogenesis by promoting nuclear entry of ChREBP in response to a high carbohydrate diet. . J Biol Chem. 296:100714. DOI: 10.1016/j.jbc.2021.100714. PMID: 33930463. PMCID: PMC8144664.
Article
79. Sandoval V, Sanz-Lamora H, Marrero PF, Relat J, Haro D. 2021; Lyophilized maqui (Aristotelia chilensis) berry administration suppresses high-fat diet-induced liver lipogenesis through the induction of the nuclear corepressor SMILE. Antioxidants (Basel). 10:637. DOI: 10.3390/antiox10050637. PMID: 33919415. PMCID: PMC8143281. PMID: fa5892aacf3e44c5ab21df0fdf85b37f.
Article
80. Luo G, Xiang L, Xiao L. 2022; Acetyl-CoA deficiency is involved in the regulation of iron overload on lipid metabolism in apolipoprotein E knockout mice. Molecules. 27:4966. DOI: 10.3390/molecules27154966. PMID: 35956917. PMCID: PMC9370536. PMID: b088f247d86d468280f0be391f80b844.
Article
81. Hardie DG. 2007; AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol. 8:774–785. DOI: 10.1038/nrm2249. PMID: 17712357.
Article
82. Hsu MC, Guo BC, Chen CH, Hu PA, Lee TS. 2021; Apigenin ameliorates hepatic lipid accumulation by activating the autophagy-mitochondria pathway. J Food Drug Anal. 29:240–254. DOI: 10.38212/2224-6614.3269. PMID: 35696209. PMCID: PMC9261827.
Article
83. Shih PH, Shiue SJ, Chen CN, Cheng SW, Lin HY, Wu LW, Wu MS. 2021; Fucoidan and fucoxanthin attenuate hepatic steatosis and inflammation of NAFLD through modulation of leptin/adiponectin axis. Mar Drugs. 19:148. DOI: 10.3390/md19030148. PMID: 33809062. PMCID: PMC8001566. PMID: 53f4c3f331c041e385653fb91ea1a0e9.
Article
84. Barbier-Torres L, Fortner KA, Iruzubieta P, Delgado TC, Giddings E, Chen Y, Champagne D, Fernández-Ramos D, Mestre D, Gomez-Santos B, Varela-Rey M, de Juan VG, Fernández-Tussy P, Zubiete-Franco I, García-Monzón C, González-Rodríguez Á, Oza D, Valença-Pereira F, Fang Q, Crespo J, et al. 2020; Silencing hepatic MCJ attenuates non-alcoholic fatty liver disease (NAFLD) by increasing mitochondrial fatty acid oxidation. Nat Commun. 11:3360. DOI: 10.1038/s41467-020-16991-2. PMID: 32620763. PMCID: PMC7334216. PMID: f4585c15ec8641c2ad4a105f86c1a9ca.
Article
85. Lu Q, Tian X, Wu H, Huang J, Li M, Mei Z, Zhou L, Xie H, Zheng S. 2021; Metabolic changes of hepatocytes in NAFLD. Front Physiol. 12:710420. DOI: 10.3389/fphys.2021.710420. PMID: 34526911. PMCID: PMC8437340. PMID: 34d4a99eb3544a13a215b9f7ae621c2d.
Article
86. Li H, Xu Q, Xu C, Hu Y, Yu X, Zhao K, Li M, Li M, Xu J, Kuang H. 2021; Bicyclol regulates hepatic gluconeogenesis in rats with type 2 diabetes and non-alcoholic fatty liver disease by inhibiting inflammation. Front Pharmacol. 12:644129. DOI: 10.3389/fphar.2021.644129. PMID: 34093184. PMCID: PMC8175979. PMID: 72ec72ee182a4c92b90af230041a565d.
Article
87. Im SS, Kim MY, Kwon SK, Kim TH, Bae JS, Kim H, Kim KS, Oh GT, Ahn YH. 2011; Peroxisome proliferator-activated receptor {alpha} is responsible for the up-regulation of hepatic glucose-6-phosphatase gene expression in fasting and db/db mice. J Biol Chem. 286:1157–1164. DOI: 10.1074/jbc.M110.157875. PMID: 21081500. PMCID: PMC3020722.
Article
88. Song D, Yin L, Wang C, Wen X. 2020; Zhenqing recipe attenuates non-alcoholic fatty liver disease by regulating the SIK1/CRTC2 signaling in experimental diabetic rats. BMC Complement Med Ther. 20:27. DOI: 10.1186/s12906-019-2811-2. PMID: 32020874. PMCID: PMC7076741. PMID: 1471a750307546c5b6034c75bc2bf4fb.
Article
89. Choudhury M, Qadri I, Rahman SM, Schroeder-Gloeckler J, Janssen RC, Friedman JE. 2011; C/EBPβ is AMP kinase sensitive and up-regulates PEPCK in response to ER stress in hepatoma cells. Mol Cell Endocrinol. 331:102–108. DOI: 10.1016/j.mce.2010.08.014. PMID: 20797423. PMCID: PMC2981635.
Article
90. Phung HH, Lee CH. 2022; Mouse models of nonalcoholic steatohepatitis and their application to new drug development. Arch Pharm Res. 45:761–794. DOI: 10.1007/s12272-022-01410-5. PMID: 36318445.
Article
91. Khan MS, Lee C, Kim SG. 2022; Non-alcoholic fatty liver disease and liver secretome. Arch Pharm Res. 45:938–963. DOI: 10.1007/s12272-022-01419-w. PMID: 36441472. PMCID: PMC9703441.
Article
92. Shaaban HH, Alzaim I, El-Mallah A, Aly RG, El-Yazbi AF, Wahid A. 2022; Metformin, pioglitazone, dapagliflozin and their combinations ameliorate manifestations associated with NAFLD in rats via anti-inflammatory, anti-fibrotic, anti-oxidant and anti-apoptotic mechanisms. Life Sci. 308:120956. DOI: 10.1016/j.lfs.2022.120956. PMID: 36103959.
Article
93. Liu B, Xiang L, Ji J, Liu W, Chen Y, Xia M, Liu Y, Liu W, Zhu P, Jin Y, Han Y, Lu J, Li X, Zheng M, Lu Y. 2021; Sparcl1 promotes nonalcoholic steatohepatitis progression in mice through upregulation of CCL2. J Clin Invest. 131:e144801. DOI: 10.1172/JCI144801. PMID: 34651580. PMCID: PMC8516465.
Article
94. Huang S, Wu Y, Zhao Z, Wu B, Sun K, Wang H, Qin L, Bai F, Leng Y, Tang W. 2021; A new mechanism of obeticholic acid on NASH treatment by inhibiting NLRP3 inflammasome activation in macrophage. Metabolism. 120:154797. DOI: 10.1016/j.metabol.2021.154797. PMID: 33984334.
95. Puengel T, Lefere S, Hundertmark J, Kohlhepp M, Penners C, Van de Velde F, Lapauw B, Hoorens A, Devisscher L, Geerts A, Boehm S, Zhao Q, Krupinski J, Charles ED, Zinker B, Tacke F. 2022; Combined therapy with a CCR2/CCR5 antagonist and FGF21 analogue synergizes in ameliorating steatohepatitis and fibrosis. Int J Mol Sci. 23:6696. DOI: 10.3390/ijms23126696. PMID: 35743140. PMCID: PMC9224277. PMID: 8267c70907c64c32a767d42485b7e4e4.
Article
96. Crengle S. 2020; Comment on: Jaine et al Cost-effectiveness of a low-dose computed tomography screening programme for lung cancer in New Zealand. Lung Cancer 2018, 124, 233-240. 2018/10/01. DOI: 10.1016/j.lungcan.2018.08.004. Lung Cancer. 145:219–220. DOI: 10.1016/j.lungcan.2018.08.004. PMID: 30268467.
Article
97. Ala M, Eftekhar SP. 2023; Weight loss breaks the bond between nonalcoholic fatty liver disease and cardiovascular diseases: a clinical and epidemiological perspective. Obes Rev. 24:e13563. DOI: 10.1111/obr.13563. PMID: 36951144.
Article
98. Ma Z, Jin K, Yue M, Chen X, Chen J. 2023; Research progress on the GIP/GLP-1 receptor coagonist tirzepatide, a rising star in type 2 diabetes. J Diabetes Res. 2023:5891532. DOI: 10.1155/2023/5891532. PMID: 37096236. PMCID: PMC10122586. PMID: ebf346f2c12c4f8c8785124c0ae0cc3d.
Article
99. Valenzuela-Vallejo L, Guatibonza-García V, Mantzoros CS. 2022; Recent guidelines for non-alcoholic fatty liver disease (NAFLD)/fatty liver disease (FLD): are they already outdated and in need of supplementation? Metabolism. 136:155248. DOI: 10.1016/j.metabol.2022.155248. PMID: 35803320.
100. Giugliano D, Scappaticcio L, Longo M, Caruso P, Maiorino MI, Bellastella G, Ceriello A, Chiodini P, Esposito K. 2021; GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: an updated meta-analysis of eight CVOTs. Cardiovasc Diabetol. 20:189. DOI: 10.1186/s12933-021-01366-8. PMID: 34526024. PMCID: PMC8442438. PMID: 350ec22390e74c53b7c53d0cd7a32144.
Article
101. Greenan J. 1984; Cardiac dysrhythmias and heart rate changes at induction of anaesthesia: a comparison of two intravenous anticholinergics. Acta Anaesthesiol Scand. 28:182–184. DOI: 10.1111/j.1399-6576.1984.tb02037.x. PMID: 6375235.
Article
102. Tacke F, Puengel T, Loomba R, Friedman SL. 2023; An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH. J Hepatol. S0168-8278(23)00218-0. DOI: 10.1016/j.jhep.2023.03.038. PMID: 37061196.
Article
103. Pennisi G, Celsa C, Enea M, Vaccaro M, Di Marco V, Ciccioli C, Infantino G, La Mantia C, Parisi S, Vernuccio F, Craxì A, Cammà C, Petta S. 2022; Effect of pharmacological interventions and placebo on liver histology in nonalcoholic steatohepatitis: a network meta-analysis. Nutr Metab Cardiovasc Dis. 32:2279–2288. DOI: 10.1016/j.numecd.2022.07.001. PMID: 35970684.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr