1. Bierhansl L, Conradi LC, Treps L, Dewerchin M, Carmeliet P. 2017; Central role of metabolism in endothelial cell function and vascular disease. Physiology (Bethesda). 32:126–40. DOI:
10.1152/physiol.00031.2016. PMID:
28202623. PMCID:
PMC5337830.
Article
2. Khan S, Taverna F, Rohlenova K, Treps L, Geldhof V, de Rooij L, Sokol L, Pircher A, Conradi LC, Kalucka J, Schoonjans L, Eelen G, Dewerchin M, Karakach T, Li X, Goveia J, Carmeliet P. 2019; EndoDB: a database of endothelial cell transcriptomics data. Nucleic Acids Res. 47(D1):D736–44. DOI:
10.1093/nar/gky997. PMID:
30357379. PMCID:
PMC6324065.
Article
3. Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, Nishigaki I. 2013; The vascular endothelium and human diseases. Int J Biol Sci. 9:1057–69. DOI:
10.7150/ijbs.7502. PMID:
24250251. PMCID:
PMC3831119.
Article
6. Félétou M. 2011; The endothelium: part 1: multiple functions of the endothelial cells-focus on endothelium-derived vasoactive mediators. Colloq Ser Integr Syst Physiol. 3:1–306. DOI:
10.4199/C00031ED1V01Y201105ISP019. PMID:
21850763.
Article
12. Marzoog BA. 2022; Recent advances in molecular biology of metabolic syndrome pathophysiology: endothelial dysfunction as a potential therapeutic target. J Diabetes Metab Disord. 21:1903–11. DOI:
10.1007/s40200-022-01088-y. PMID:
36065330. PMCID:
PMC9430013.
Article
17. Hu Y, Chen M, Wang M, Li X. 2022; Flow-mediated vasodilation through mechanosensitive G protein-coupled receptors in endothelial cells. Trends Cardiovasc Med. 32:61–70. DOI:
10.1016/j.tcm.2020.12.010. PMID:
33406458.
Article
18. Pernomian L, do Prado AF, Silva BR, de Paula TD, Grando MD, Bendhack LM. 2021; C-type natriuretic peptide-induced relaxation through cGMP-dependent protein kinase and SERCA activation is impaired in two kidney-one clip rat aorta. Life Sci. 272:119223. DOI:
10.1016/j.lfs.2021.119223. PMID:
33610574.
Article
19. Wettschureck N, Strilic B, Offermanns S. 2019; Passing the vascular barrier: endothelial signaling processes controlling extravasation. Physiol Rev. 99:1467–525. DOI:
10.1152/physrev.00037.2018. PMID:
31140373.
Article
20. Motawe ZY, Abdelmaboud SS, Breslin JW. 2021; Involvement of sigma receptor-1 in lymphatic endothelial barrier integrity and bioenergetic regulation. Lymphat Res Biol. 19:231–9. DOI:
10.1089/lrb.2020.0060. PMID:
33226886. PMCID:
PMC8220569.
Article
21. Frees A, Assersen KB, Jensen M, Hansen PBL, Vanhoutte PM, Madsen K, Federlein A, Lund L, Toft A, Jensen BL. 2021; Natriuretic peptides relax human intrarenal arteries through natriuretic peptide receptor type-A recapitulated by soluble guanylyl cyclase agonists. Acta Physiol (Oxf). 231:e13565. DOI:
10.1111/apha.13565. PMID:
33010104.
Article
22. Tao BB, Liu SY, Zhang CC, Fu W, Cai WJ, Wang Y, Shen Q, Wang MJ, Chen Y, Zhang LJ, Zhu YZ, Zhu YC. 2013; VEGFR2 functions as an H2S-targeting receptor protein kinase with its novel Cys1045-Cys1024 disulfide bond serving as a specific molecular switch for hydrogen sulfide actions in vascular endothelial cells. Antioxid Redox Signal. 19:448–64. DOI:
10.1089/ars.2012.4565. PMID:
23199280. PMCID:
PMC3704125.
23. Xiao L, Dong JH, Teng X, Jin S, Xue HM, Liu SY, Guo Q, Shen W, Ni XC, Wu YM. 2018; Hydrogen sulfide improves endothelial dysfunction in hypertension by activating peroxisome proliferator-activated receptor delta/endothelial nitric oxide synthase signaling. J Hypertens. 36:651–65. DOI:
10.1097/HJH.0000000000001605. PMID:
29084084.
Article
24. Zuccolo E, Laforenza U, Negri S, Botta L, Berra-Romani R, Faris P, Scarpellino G, Forcaia G, Pellavio G, Sancini G, Moccia F. 2019; Muscarinic M5 receptors trigger acetylcholine-induced Ca
2+ signals and nitric oxide release in human brain microvascular endothelial cells. J Cell Physiol. 234:4540–62. DOI:
10.1002/jcp.27234. PMID:
30191989.
Article
25. Berra-Romani R, Faris P, Pellavio G, Orgiu M, Negri S, Forcaia G, Var-Gaz-Guadarrama V, Garcia-Carrasco M, Botta L, Sancini G, Laforenza U, Moccia F. 2020; Histamine induces intracellular Ca
2+ oscillations and nitric oxide release in endothelial cells from brain microvascular circulation. J Cell Physiol. 235:1515–30. DOI:
10.1002/jcp.29071. PMID:
31310018.
26. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M. 2018; DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46(D1):D1074–82. DOI:
10.1093/nar/gkx1037. PMID:
29126136. PMCID:
PMC5753335.
Article
27. Tao BB, Cai WJ, Zhu YC. 2015; H2S is a promoter of angiogenesis: identification of H2S "receptors" and its molecular switches in vascular endothelial cells. Handb Exp Pharmacol. 230:137–52. DOI:
10.1007/978-3-319-18144-8_6. PMID:
26162832.
Article
30. Kowalczyk A, Kleniewska P, Kolodziejczyk M, Skibska B, Goraca A. 2015; The role of endothelin-1 and endothelin receptor antagonists in inflammatory response and sepsis. Arch Immunol Ther Exp (Warsz). 63:41–52. DOI:
10.1007/s00005-014-0310-1. PMID:
25288367. PMCID:
PMC4289534.
Article
31. Abdullah Marzoog B. 2023; Adaptive and compensatory mechanisms of the cardiovascular system and disease risk factors in young males and females. New Emir Med J. 4:e281122211293. DOI:
10.2174/04666221128110145.
Article
35. Houde M, Desbiens L, D'Orléans-Juste P. 2016; Endothelin-1: biosynthesis, signaling and vasoreactivity. Adv Pharmacol. 77:143–75. DOI:
10.1016/bs.apha.2016.05.002. PMID:
27451097.
36. Sousa J, Diniz C. Lenasi H, editor. 2018. Vascular sympathetic neurotransmission and endothelial dysfunction. Endothelial Dysfunction. IntechOpen;DOI:
10.5772/intechopen.72442.
Article
38. Vanhoutte PM, Shimokawa H, Feletou M, Tang EH. 2017; Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf). 219:22–96. DOI:
10.1111/apha.12646. PMID:
26706498.
Article
39. Iring A, Jin YJ, Albarrán-Juárez J, Siragusa M, Wang S, Dancs PT, Nakayama A, Tonack S, Chen M, Künne C, Sokol AM, Günther S, Martínez A, Fleming I, Wettschureck N, Graumann J, Weinstein LS, Offermanns S. 2019; Shear stress-induced endothelial adrenomedullin signaling regulates vascular tone and blood pressure. J Clin Invest. 129:2775–91. DOI:
10.1172/JCI123825. PMID:
31205027. PMCID:
PMC6597232.
Article
40. Voors AA, Kremer D, Geven C, Ter Maaten JM, Struck J, Bergmann A, Pickkers P, Metra M, Mebazaa A, Düngen HD, Butler J. 2019; Adrenomedullin in heart failure: pathophysiology and therapeutic application. Eur J Heart Fail. 21:163–71. DOI:
10.1002/ejhf.1366. PMID:
30592365. PMCID:
PMC6607488.
Article
45. Randi AM, Laffan MA. 2017; Von Willebrand factor and angiogenesis: basic and applied issues. J Thromb Haemost. 15:13–20. DOI:
10.1111/jth.13551. PMID:
27778439.
Article
46. Daly C, Eichten A, Castanaro C, Pasnikowski E, Adler A, Lalani AS, Papadopoulos N, Kyle AH, Minchinton AI, Yancopoulos GD, Thurston G. 2013; Angiopoietin-2 functions as a Tie2 agonist in tumor models, where it limits the effects of VEGF inhibition. Cancer Res. 73:108–18. DOI:
10.1158/0008-5472.CAN-12-2064. PMID:
23149917.
Article
49. Groeneveld DJ, Sanders YV, Adelmeijer J, Mauser-Bunschoten EP, van der Bom JG, Cnossen MH, Fijnvandraat K, Laros-van Gorkom BAP, Meijer K, Lisman T, Eikenboom J, Leebeek FWG. 2018; Circulating angiogenic mediators in patients with moderate and severe von Willebrand disease: a multicentre cross-sectional study. Thromb Haemost. 118:152–60. DOI:
10.1160/TH17-06-0397. PMID:
29304535.
Article
54. Julovi SM, Shen K, Mckelvey K, Minhas N, March L, Jackson CJ. 2013; Activated protein C inhibits proliferation and tumor necrosis factor α-stimulated activation of p38, c-Jun NH2-terminal kinase (JNK) and Akt in rheumatoid synovial fibroblasts. Mol Med. 19:324–31. DOI:
10.2119/molmed.2013.00034. PMID:
24096826. PMCID:
PMC4344457.
Article
55. Healy LD, Puy C, Fernández JA, Mitrugno A, Keshari RS, Taku NA, Chu TT, Xu X, Gruber A, Lupu F, Griffin JH, McCarty OJT. 2017; Activated protein C inhibits neutrophil extracellular trap formation
in vitro and activation
in vivo. J Biol Chem. 292:8616–29. DOI:
10.1074/jbc.M116.768309. PMID:
28408624. PMCID:
PMC5448091.
57. Ito T, Kakihana Y, Maruyama I. 2016; Thrombomodulin as an intravascular safeguard against inflammatory and thrombotic diseases. Expert Opin Ther Targets. 20:151–8. DOI:
10.1517/14728222.2016.1086750. PMID:
26558419.
Article
59. Son BK, Akishita M, Iijima K, Ogawa S, Arai T, Ishii H, Maemura K, Aburatani H, Eto M, Ouchi Y. 2013; Thrombomodulin, a novel molecule regulating inorganic phosphate-induced vascular smooth muscle cell calcification. J Mol Cell Cardiol. 56:72–80. DOI:
10.1016/j.yjmcc.2012.12.013. PMID:
23274063.
Article
63. Xie X, Sun W, Wang J, Li X, Liu X, Liu N. 2017; Activation of thromboxane A2 receptors mediates endothelial dysfunction in diabetic mice. Clin Exp Hypertens. 39:312–8. DOI:
10.1080/10641963.2016.1246558. PMID:
28513223.
Article
64. Ellinsworth DC, Shukla N, Fleming I, Jeremy JY. 2014; Interactions between thromboxane A₂, thromboxane/prostaglandin (TP) receptors, and endothelium-derived hyperpolarization. Cardiovasc Res. 102:9–16. DOI:
10.1093/cvr/cvu015. PMID:
24469536.
Article
65. Ding J, Yu M, Jiang J, Luo Y, Zhang Q, Wang S, Yang F, Wang A, Wang L, Zhuang M, Wu S, Zhang Q, Xia Y, Lu D. 2020; Angiotensin II decreases endothelial nitric oxide synthase phosphorylation
via AT
1R Nox/ROS/PP2A pathway. Front Physiol. 11:566410. DOI:
10.3389/fphys.2020.566410. PMID:
33162896. PMCID:
PMC7580705. PMID:
d850ebab98074c969807b3972cc481bf.
Article
66. Walker M, Green J, Ferrie R, Cook-Mills J. 2017; Serotonin receptor regulation of eosinophil transendothelial migration. FASEB J. 31:55.
67. Saternos HC, Almarghalani DA, Gibson HM, Meqdad MA, Antypas RB, Lingireddy A, AbouAlaiwi WA. 2018; Distribution and function of the muscarinic receptor subtypes in the cardiovascular system. Physiol Genomics. 50:1–9. DOI:
10.1152/physiolgenomics.00062.2017. PMID:
29093194.
68. Radu BM, Osculati AMM, Suku E, Banciu A, Tsenov G, Merigo F, Di Chio M, Banciu DD, Tognoli C, Kacer P, Giorgetti A, Radu M, Bertini G, Fabene PF. 2017; All muscarinic acetylcholine receptors (M
1-M
5) are expressed in murine brain microvascular endothelium. Sci Rep. 7:5083. DOI:
10.1038/s41598-017-05384-z. PMID:
28698560. PMCID:
PMC5506046. PMID:
02226d4ad5a34ae38427c894c235be2a.
69. Wilson C, Lee MD, McCarron JG. 2016; Acetylcholine released by endothelial cells facilitates flow-mediated dilatation. J Physiol. 594:7267–307. DOI:
10.1113/JP272927. PMID:
27730645. PMCID:
PMC5157078.
Article
71. Kashefiolasl S, Leisegang MS, Helfinger V, Schürmann C, Pflüger-Müller B, Randriamboavonjy V, Vasconez AE, Carmeliet G, Badenhoop K, Hintereder G, Seifert V, Schröder K, Konczalla J, Brandes RP. 2021; Vitamin D-A new perspective in treatment of cerebral vasospasm. Neurosurgery. 88:674–85. DOI:
10.1093/neuros/nyaa484. PMID:
33269399. PMCID:
PMC7884149.
Article
72. Chaudhuri P, Rosenbaum MA, Sinharoy P, Damron DS, Birnbaumer L, Graham LM. 2016; Membrane translocation of TRPC6 channels and endothelial migration are regulated by calmodulin and PI3 kinase activation. Proc Natl Acad Sci U S A. 113:2110–5. DOI:
10.1073/pnas.1600371113. PMID:
26858457. PMCID:
PMC4776520.
Article
74. Shihoya W, Nishizawa T, Okuta A, Tani K, Dohmae N, Fujiyoshi Y, Nureki O, Doi T. 2016; Activation mechanism of endothelin ETB receptor by endothelin-1. Nature. 537:363–8. DOI:
10.1038/nature19319. PMID:
27595334.
Article
75. Xu S, Wen H, Jiang H. 2012; Urotensin II promotes the proliferation of endothelial progenitor cells through p38 and p44/42 MAPK activation. Mol Med Rep. 6:197–200. DOI:
10.3892/mmr.2012.899. PMID:
22552405.
76. Ashraf MA, Nookala V. 2022. Biochemistry of platelet activating factor. StatPearls. StatPearls Publishing;Treasure Island: DOI:
10.1007/springerreference_39453.
78. Berendam SJ, Koeppel AF, Godfrey NR, Rouhani SJ, Woods AN, Rodriguez AB, Peske JD, Cummings KL, Turner SD, Engelhard VH. 2019; Comparative transcriptomic analysis identifies a range of immunologically related functional elaborations of lymph node associated lymphatic and blood endothelial cells. Front Immunol. 10:816. DOI:
10.3389/fimmu.2019.00816. PMID:
31057546. PMCID:
PMC6478037. PMID:
db1eca5d9c874b308d3564b91c460711.
Article
80. Ribatti D. Ribatti D, editor. 2017. The origins of lymphatic vessels: an historical review. Milestones in Immunology. Elsevier;p. 129–62. DOI:
10.1016/B978-0-12-811313-4.00010-3.
82. Yang J, Zhang S, Zhang L, Xie X, Wang H, Jie Z, Gu M, Yang JY, Cheng X, Sun SC. 2019; Lymphatic endothelial cells regulate B-cell homing to lymph nodes via a NIK-dependent mechanism. Cell Mol Immunol. 16:165–77. DOI:
10.1038/cmi.2017.167. PMID:
29503445. PMCID:
PMC6355805.
Article
85. Dieterich LC, Tacconi C, Menzi F, Proulx ST, Kapaklikaya K, Hamada M, Takahashi S, Detmar M. 2020; Lymphatic MAFB regulates vascular patterning during developmental and pathological lymphangiogenesis. Angiogenesis. 23:411–23. DOI:
10.1007/s10456-020-09721-1. PMID:
32307629. PMCID:
PMC7311381.
Article
86. Jourde-Chiche N, Fakhouri F, Dou L, Bellien J, Burtey S, Frimat M, Jarrot PA, Kaplanski G, Le Quintrec M, Pernin V, Rigothier C, Sallée M, Fremeaux-Bacchi V, Guerrot D, Roumenina LT. 2019; Endothelium structure and function in kidney health and disease. Nat Rev Nephrol. 15:87–108. DOI:
10.1038/s41581-018-0098-z. PMID:
30607032.
87. Becker PW, Sacilotto N, Nornes S, Neal A, Thomas MO, Liu K, Preece C, Ratnayaka I, Davies B, Bou-Gharios G, De Val S. 2016; An intronic Flk1 enhancer directs arterial-specific expression via RBPJ-mediated venous repression. Arterioscler Thromb Vasc Biol. 36:1209–19. DOI:
10.1161/ATVBAHA.116.307517. PMID:
27079877. PMCID:
PMC4894770.
90. Bubb KJ, Aubdool AA, Moyes AJ, Lewis S, Drayton JP, Tang O, Mehta V, Zachary IC, Abraham DJ, Tsui J, Hobbs AJ. 2019; Endothelial C-type natriuretic peptide is a critical regulator of angiogenesis and vascular remodeling. Circulation. 139:1612–28. DOI:
10.1161/CIRCULATIONAHA.118.036344. PMID:
30586761. PMCID:
PMC6438487.
Article