Korean J Sports Med.  2023 Jun;41(2):100-106. 10.5763/kjsm.2023.41.2.100.

Acute Effects of Virtual Reality Exergame on Vascular Function in Children and Adolescents with Congenital Heart Disease: A Single-Arm Trial

Affiliations
  • 1Department of Sport Science, University of Seoul, Seoul, Korea
  • 2Division of Urban Social Health, Graduate School of Urban Public Health, University of Seoul, Seoul, Korea

Abstract

Purpose
Regular aerobic exercise improves exercise capacity and quality of life in children with congenital heart disease (CHD), but it remains unclear whether aerobic exercise would improve vascular function in children with CHD. We tested the hypothesis that acute bout of virtual reality (VR) exergame would improve vascular function in children with CHD.
Methods
In a single-arm study, eight children (age, 9±1 years; five males) with CHD participated in VR exergame (30 minutes at 40% of heart rate reserve) using a stationary cycle ergometer with a head mount display. Endothelial function and arterial stiffness as surrogate markers of vascular function were assessed via reactive hyperemia index (RHI) and augmentation index (AIx) using peripheral arterial tonometry at baseline and 30 minutes after VR exergame.
Results
Compared to baseline, VR exergame improved in RHI (1.08 [0.96–1.30] to 1.16 [1.09–1.36], p< 0.05) and natural log transformed RHI (0.07 [−0.04–0.26] to 0.15 [0.09–0.31], p< 0.05). However, no significant changes were observed for decrease AIx (−1.00 [−9.00–9.50] to −7.00 [−14.00–8.75], p=0.547) and AIx@75 (−6.50 [9.75–3.50] to −4.50 [−13.00–4.50], p=0.735) (all index values are reported as median [interquartile range]).
Conclusion
These findings suggest that a single bout of VR exergame has the potential to improve vascular endothelial function in children with CHD.

Keyword

Congenital heart disease; Exergaming; Arterial stiffness; Vasodilation

Figure

  • Fig. 1 Experimental design. VR: virtual reality, RHI: reactive hyperemia index, AIx: augmentation index.

  • Fig. 2 Virtual reality exergame. (A) Oculus Quest 2 (Meta Quest). (B) VZfit Play (VirZoom).

  • Fig. 3 Comparison of endothelial function and arterial stiffness 30 minutes after virtual reality (VR) exergame. (A) RHI response to VR exergame. (B) LnRHI response to VR exergame. (C) AIx response to VR exergame. (D) AIx@75 response to VR exergame. RHI: reactive hyperemia index, LnRHI: logarithmic transformed RHI, AIx: augmentation index, AIx@75: heart rate-corrected augmentation index.


Reference

1. Verheugt CL, Uiterwaal CS, van der Velde ET, et al. 2010; Mortality in adult congenital heart disease. Eur Heart J. 31:1220–9. DOI: 10.1093/eurheartj/ehq032. PMID: 20207625.
Article
2. Bonetti PO, Lerman LO, Lerman A. 2003; Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 23:168–75. DOI: 10.1161/01.ATV.0000051384.43104.FC. PMID: 12588755.
3. Vlachopoulos C, Aznaouridis K, Stefanadis C. 2010; Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 55:1318–27. DOI: 10.1016/j.jacc.2009.10.061. PMID: 20338492.
4. de Groot PC, Thijssen D, Binkhorst M, Green DJ, Schokking M, Hopman MT. 2010; Vascular function in children with repaired tetralogy of Fallot. Am J Cardiol. 106:851–5. DOI: 10.1016/j.amjcard.2010.05.009. PMID: 20816127.
Article
5. Jin SM, Noh CI, Bae EJ, Choi JY, Yun YS. 2007; Impaired vascular function in patients with Fontan circulation. Int J Cardiol. 120:221–6. DOI: 10.1016/j.ijcard.2006.09.020. PMID: 17175041.
Article
6. Sandhu K, Pepe S, Smolich JJ, Cheung MM, Mynard JP. 2021; Arterial stiffness in congenital heart disease. Heart Lung Circ. 30:1602–12. DOI: 10.1016/j.hlc.2021.07.018. PMID: 34420886.
Article
7. Sabri MR, Daryoushi H, Gharipour M. 2015; Endothelial function state following repair of cyanotic congenital heart diseases. Cardiol Young. 25:222–7. DOI: 10.1017/S104795111300187X. PMID: 24168765.
Article
8. Takken T, Giardini A, Reybrouck T, et al. 2012; Recommendations for physical activity, recreation sport, and exercise training in paediatric patients with congenital heart disease: a report from the Exercise, Basic & Translational Research Section of the European Association of Cardiovascular Prevention and Rehabilitation, the European Congenital Heart and Lung Exercise Group, and the Association for European Paediatric Cardiology. Eur J Prev Cardiol. 19:1034–65. DOI: 10.1177/1741826711420000. PMID: 23126001.
Article
9. Duppen N, Takken T, Hopman MT, et al. 2013; Systematic review of the effects of physical exercise training programmes in children and young adults with congenital heart disease. Int J Cardiol. 168:1779–87. DOI: 10.1016/j.ijcard.2013.05.086. PMID: 23746621.
Article
10. Lopez JR, Voss C, Kuan MT, Hemphill NM, Sandor GG, Harris KC. 2020; Physical activity is associated with better vascular function in children and adolescents with congenital heart disease. Can J Cardiol. 36:1474–81. DOI: 10.1016/j.cjca.2019.12.019. PMID: 32603699.
Article
11. Oliveira CB, Pinto RZ, Saraiva BT, et al. 2020; Effects of active video games on children and adolescents: a systematic review with meta-analysis. Scand J Med Sci Sports. 30:4–12. DOI: 10.1111/sms.13539. PMID: 31418915.
Article
12. Qian J, McDonough DJ, Gao Z. 2020; The effectiveness of virtual reality exercise on individual's physiological, psychological and rehabilitative outcomes: a systematic review. Int J Environ Res Public Health. 17:4133. DOI: 10.3390/ijerph17114133. PMID: 32531906. PMCID: PMC7312871.
Article
13. Kircher E, Ketelhut S, Ketelhut K, et al. 2022; Acute effects of heart rate-controlled exergaming on vascular function in young adults. Games Health J. 11:58–66. DOI: 10.1089/g4h.2021.0196. PMID: 34986027.
Article
14. Graf DL, Pratt LV, Hester CN, Short KR. 2009; Playing active video games increases energy expenditure in children. Pediatrics. 124:534–40. DOI: 10.1542/peds.2008-2851. PMID: 19596737. PMCID: PMC8329994.
Article
15. Baumgartner H, De Backer J, Babu-Narayan SV, et al. 2021; 2020 ESC Guidelines for the management of adult congenital heart disease. Eur Heart J. 42:563–645. DOI: 10.1093/eurheartj/ehaa554. PMID: 32860028.
16. Ohkawara K, Oshima Y, Hikihara Y, Ishikawa-Takata K, Tabata I, Tanaka S. 2011; Real-time estimation of daily physical activity intensity by a triaxial accelerometer and a gravity-removal classification algorithm. Br J Nutr. 105:1681–91. DOI: 10.1017/S0007114510005441. PMID: 21262061.
Article
17. Selamet Tierney ES, Newburger JW, et al. 2009; Endothelial pulse amplitude testing: feasibility and reproducibility in adolescents. J Pediatr. 154:901–5. DOI: 10.1016/j.jpeds.2008.12.028. PMID: 19217124.
18. Rosenberry R, Nelson MD. 2020; Reactive hyperemia: a review of methods, mechanisms, and considerations. Am J Physiol Regul Integr Comp Physiol. 318:R605–18. DOI: 10.1152/ajpregu.00339.2019. PMID: 32022580.
Article
19. Dawson EA, Green DJ, Cable NT, Thijssen DH. 2013; Effects of acute exercise on flow-mediated dilatation in healthy humans. J Appl Physiol (1985). 115:1589–98. DOI: 10.1152/japplphysiol.00450.2013. PMID: 24030665.
20. Bond B, Hind S, Williams CA, Barker AR. 2015; The acute effect of exercise intensity on vascular function in adolescents. Med Sci Sports Exerc. 47:2628–35. DOI: 10.1249/MSS.0000000000000715. PMID: 26057942.
Article
21. Kranen SH, Oliveira RS, Bond B, Williams CA, Barker AR. 2021; The acute effect of high- and moderate-intensity interval exercise on vascular function before and after a glucose challenge in adolescents. Exp Physiol. 106:913–24. DOI: 10.1113/EP089159. PMID: 33369795.
Article
22. Siasos G, Athanasiou D, Terzis G, et al. 2016; Acute effects of different types of aerobic exercise on endothelial function and arterial stiffness. Eur J Prev Cardiol. 23:1565–72. DOI: 10.1177/2047487316647185. PMID: 27121699.
Article
23. Mutter AF, Cooke AB, Saleh O, Gomez YH, Daskalopoulou SS. 2017; A systematic review on the effect of acute aerobic exercise on arterial stiffness reveals a differential response in the upper and lower arterial segments. Hypertens Res. 40:146–72. DOI: 10.1038/hr.2016.111. PMID: 27733765.
Article
24. Ansell SK, Jester M, Tryggestad JB, Short KR. 2020; A pilot study of the effects of a high-intensity aerobic exercise session on heart rate variability and arterial compliance in adolescents with or without type 1 diabetes. Pediatr Diabetes. 21:486–95. DOI: 10.1111/pedi.12983. PMID: 31951305.
25. World Health Organization (WHO). WHO guidelines on physical activity and sedentary behaviour. WHO;2020.
26. Montero D, Breenfeldt-Andersen A, Oberholzer L, Haider T. 2017; Effect of exercise on arterial stiffness: is there a ceiling effect? Am J Hypertens. 30:1069–72. DOI: 10.1093/ajh/hpx145. PMID: 28985267.
27. Acosta-Dighero R, Torres-Castro R, Rodríguez-Núñez I, et al. 2020; Physical activity assessments in children with congenital heart disease: a systematic review. Acta Paediatr. 109:2479–90. DOI: 10.1111/apa.15478. PMID: 32654285.
Article
28. Brudy L, Hock J, Häcker AL, et al. 2020; Children with congenital heart disease are active but need to keep moving: a cross-sectional study using wrist-worn physical activity trackers. J Pediatr. 217:13–9. DOI: 10.1016/j.jpeds.2019.09.077. PMID: 31740142.
29. Yang CC, Hsu YL. 2010; A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors (Basel). 10:7772–88. DOI: 10.3390/s100807772. PMID: 22163626. PMCID: PMC3231187.
Article
Full Text Links
  • KJSM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr