2. Kung TH, Cheatham M, Medenilla A, Sillos C, De Leon L, Elepaño C, et al. Performance of ChatGPT on USMLE: potential for AI-assisted medical education using large language models. PLOS Digit Health. 2023; 2:e0000198. PMID:
36812645.
3. Mbakwe AB, Lourentzou I, Celi LA, Mechanic OJ, Dagan A. ChatGPT passing USMLE shines a spotlight on the flaws of medical education. PLOS Digit Health. 2023; 2:e0000205. PMID:
36812618.
4. Bommarito M II, Katz DM. GPT takes the Bar Exam [Preprint]. arXiv. 2212.14402. Posted online 2022 Dec 29. Available from: . DOI:
10.48550/arXiv.2212.14402.
6. Debas HT, Bass BL, Brennan MF, Flynn TC, Folse JR, Freischlag JA, et al. American Surgical Association Blue Ribbon Committee Report on Surgical Education: 2004. Ann Surg. 2005; 241:1–8. PMID:
15621984.
7. Wartman SA, Combs CD. Medical education must move from the information age to the age of artificial intelligence. Acad Med. 2018; 93:1107–1109. PMID:
29095704.
9. Kapadia MR, Kieran K. Being affable, available, and able is not enough: prioritizing surgeon-patient communication. JAMA Surg. 2020; 155:277–278. PMID:
32101264.
10. Han ER, Yeo S, Kim MJ, Lee YH, Park KH, Roh H. Medical education trends for future physicians in the era of advanced technology and artificial intelligence: an integrative review. BMC Med Educ. 2019; 19:460. PMID:
31829208.
11. Bender EM, Gebru T, Mcmillan-Major A, Shmitchell S. On the dangers of stochastic parrots: can language models be too big? In : FAccT '21: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency; 2021 Mar 3-10; p. 610–623. Available from: . DOI:
10.1145/3442188.3445922.
12. Luo R, Sun L, Xia Y, Qin T, Zhang S, Poon H, et al. BioGPT: generative pre-trained transformer for biomedical text generation and mining. Brief Bioinform. 2022; 23:bbac409. PMID:
36156661.
13. Touvron H, Lavril T, Izacard G, Martinet X, Lachaux MA, Lacroix T, et al. Llama: Open and efficient foundation language models. arXiv [Preprint]. 2023; 02. 27. DOI:
10.48550/arXiv.2302.13971.