J Korean Neurosurg Soc.  2023 May;66(3):228-238. 10.3340/jkns.2022.0288.

Pathogenesis and Prevention of Intraventricular Hemorrhage in Preterm Infants

Affiliations
  • 1Department of Pediatrics, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
  • 2Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan

Abstract

Intraventricular hemorrhage (IVH) is a serious concern for preterm infants and can predispose such infants to brain injury and poor neurodevelopmental outcomes. IVH is particularly common in preterm infants. Although advances in obstetric management and neonatal care have led to a lower mortality rate for preterm infants with IVH, the IVH-related morbidity rate in this population remains high. Therefore, the present review investigated the pathophysiology of IVH and the evidence related to interventions for prevention. The analysis of the pathophysiology of IVH was conducted with a focus on the factors associated with cerebral hemodynamics, vulnerabilities in the structure of cerebral vessels, and host or genetic predisposing factors. The findings presented in the literature indicate that fluctuations in cerebral blood flow, the presence of hemodynamic significant patent ductus arteriosus, arterial carbon dioxide tension, and impaired cerebral venous drainage; a vulnerable or fragile capillary network; and a genetic variant associated with a mechanism underlying IVH development may lead to preterm infants developing IVH. Therefore, strategies focused on antenatal management, such as routine corticosteroid administration and magnesium sulfate use; perinatal management, such as maternal transfer to a specialized center; and postnatal management, including pharmacological agent administration and circulatory management involving prevention of extreme blood pressure, hemodynamic significant patent ductus arteriosus management, and optimization of cardiac function, can lower the likelihood of IVH development in preterm infants. Incorporating neuroprotective care bundles into routine care for such infants may also reduce the likelihood of IVH development. The findings regarding the pathogenesis of IVH further indicate that cerebrovascular status and systemic hemodynamic changes must be analyzed and monitored in preterm infants and that individualized management strategies must be developed with consideration of the risk factors for and physiological status of each preterm infant.

Keyword

Hemrrhage, cerebral intraventricular; Preterm infants; Pathogenesis; Prevention

Figure

  • Fig. 1. Overview of the pathogenesis of IVH. IVH : intraventricular hemorrhage, hsPDA : hemodynamic significant patent ductus arteriosus, PaCO2 : arterial carbon dioxide tension, APOE : apolipoprotein E.


Cited by  1 articles

Editor’s Pick in May 2023
Chae-Yong Kim, Seung-Ki Kim
J Korean Neurosurg Soc. 2023;66(3):223-224.    doi: 10.3340/jkns.2023.0079.


Reference

References

1. Al-Matary A, Abu Shaheen A, Abozaid S. Use of prophylactic indomethacin in preterm infants: a systematic review and meta-analysis. Front Pediatr. 10:760029. 2022.
Article
2. Alotaibi WSM, Alsaif NS, Ahmed IA, Mahmoud AF, Ali K, Hammad A, et al. Reduction of severe intraventricular hemorrhage, a tertiary singlecenter experience: incidence trends, associated risk factors, and hospital policy. Childs Nerv Syst. 36:2971–2979. 2020.
Article
3. Altaany D, Natarajan G, Gupta D, Zidan M, Chawla S. Severe intraventricular hemorrhage in extremely premature infants: are high carbon dioxide pressure or fluctuations the culprit? Am J Perinatol. 32:839–844. 2015.
Article
4. Aly S, El-Dib M, Lu Z, El Tatawy S, Mohamed M, Aly H. Factors affecting cerebrovascular reactivity to CO2 in premature infants. J Perinat Med. 47:979–985. 2019.
Article
5. American College of Obstetricians and Gynecologists; Society for Maternal-Fetal Medicine. Obstetric care consensus No. 6: periviable birth. Obstet Gynecol. 130:e187–e199. 2017.
6. Auerbach A, Eventov-Friedman S, Arad I, Peleg O, Bdolah-Abram T, BarOz B, et al. Long duration of hyperglycemia in the first 96 hours of life is associated with severe intraventricular hemorrhage in preterm infants. J Pediatr. 163:388–393. 2013.
Article
7. Ayed M, Ahmed J, More K, Ayed A, Husain H, AlQurashi A, et al. Antenatal magnesium sulfate for preterm neuroprotection: a single-center experience from Kuwait Tertiary NICU. Biomed Hub. 7:80–87. 2022.
Article
8. Balasubramanian H, Ananthan A, Jain V, Rao SC, Kabra N. Umbilical cord milking in preterm infants: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 105:572–580. 2020.
Article
9. Bansal V, Desai A. Efficacy of antenatal magnesium sulfate for neuroprotection in extreme prematurity: a comparative observational study. J Obstet Gynaecol India. 72:36–47. 2022.
Article
10. Bates S, Odd D, Luyt K, Mannix P, Wach R, Evans D, et al. Superior vena cava flow and intraventricular haemorrhage in extremely preterm infants. J Matern Fetal Neonatal Med. 29:1581–1587. 2016.
Article
11. Baumgartner S, Olischar M, Wald M, Werther T, Berger A, Waldhor T, et al. Left ventricular pumping during the transition-adaptation sequence in preterm infants: impact of the patent ductus arteriosus. Pediatr Res. 83:1016–1023. 2018.
Article
12. Borna H, Rad SM, Borna S, Mohseni SM. Incidence of and risk factors for birth trauma in Iran. Taiwan J Obstet Gynecol. 49:170–173. 2010.
Article
13. Brunner B, Hoeck M, Schermer E, Streif W, Kiechl-Kohlendorfer U. Patent ductus arteriosus, low platelets, cyclooxygenase inhibitors, and intraventricular hemorrhage in very low birth weight preterm infants. J Pediatr. 163:23–28. 2013.
Article
14. Castrodale V, Rinehart S. The golden hour: improving the stabilization of the very low birth-weight infant. Adv Neonatal Care. 14:9–14. quiz 15-16. 2014.
15. Cayabyab R, McLean CW, Seri I. Definition of hypotension and assessment of hemodynamics in the preterm neonate. J Perinatol 29 Suppl. 2:S58–S62. 2009.
Article
16. Chen X, Li X, Chang Y, Li W, Cui H. Effect and safety of timing of cord clamping on neonatal hematocrit values and clinical outcomes in term infants: a randomized controlled trial. J Perinatol. 38:251–257. 2018.
Article
17. Chock VY, Ramamoorthy C, Van Meurs KP. Cerebral autoregulation in neonates with a hemodynamically significant patent ductus arteriosus. J Pediatr. 160:936–942. 2012.
Article
18. Christian EA, Jin DL, Attenello F, Wen T, Cen S, Mack WJ, et al. Trends in hospitalization of preterm infants with intraventricular hemorrhage and hydrocephalus in the United States, 2000-2010. J Neurosurg Pediatr. 17:260–269. 2016.
Article
19. Ciccone MM, Scicchitano P, Zito A, Gesualdo M, Sassara M, Calderoni G, et al. Different functional cardiac characteristics observed in term/preterm neonates by echocardiography and tissue doppler imaging. Early Hum Dev. 87:555–558. 2011.
20. Cools F, Offringa M, Askie LM. Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants. Cochrane Database Syst Rev. (3):CD000104. 2015.
Article
21. Costa STB, Costa P, Graca AM, Abrantes M; Portuguese National Registry of very low birth weight infants. Delivery mode and neurological complications in very low birth weight infants. Am J Perinatol. 2022; [Epub ahead of print].
Article
22. da Costa CS, Czosnyka M, Smielewski P, Austin T. Optimal mean arterial blood pressure in extremely preterm infants within the first 24 hours of life. J Pediatr. 203:242–248. 2018.
Article
23. de Bijl-Marcus K, Brouwer AJ, De Vries LS, Groenendaal F, Wezel-Meijler GV. Neonatal care bundles are associated with a reduction in the incidence of intraventricular haemorrhage in preterm infants: a multicentre cohort study. Arch Dis Child Fetal Neonatal Ed. 105:419–424. 2020.
Article
24. de Figueiredo Vinagre LE, de Siqueira Caldas JP, Martins Marba ST, Procianoy RS, de Cassia Silveira R, Santiago Rego MA, et al. Temporal trends in intraventricular hemorrhage in preterm infants: a Brazilian multicenter cohort. Eur J Paediatr Neurol. 39:65–73. 2022.
Article
25. Dempsey EM. What should we do about low blood pressure in preterm infants. Neonatology. 111:402–407. 2017.
Article
26. Dempsey EM, Al Hazzani F, Barrington KJ. Permissive hypotension in the extremely low birthweight infant with signs of good perfusion. Arch Dis Child Fetal Neonatal Ed. 94:F241–244. 2009.
Article
27. Dempsey EM, Barrington KJ. Diagnostic criteria and therapeutic interventions for the hypotensive very low birth weight infant. J Perinatol. 26:677–681. 2006.
Article
28. Dix L, Molenschot M, Breur J, de Vries W, Vijlbrief D, Groenendaal F, et al. Cerebral oxygenation and echocardiographic parameters in preterm neonates with a patent ductus arteriosus: an observational study. Arch Dis Child Fetal Neonatal Ed. 101:F520–F526. 2016.
Article
29. Dzietko M, Schulz S, Preuss M, Haertel C, Stein A, Felderhoff-Mueser U, et al. Apolipoprotein E gene polymorphisms and intraventricular haemorrhage in infants born preterm: a large prospective multicentre cohort study. Dev Med Child Neurol. 61:337–342. 2019.
Article
30. Egesa WI, Odoch S, Odong RJ, Nakalema G, Asiimwe D, Ekuk E, et al. Germinal matrix-intraventricular hemorrhage: a tale of preterm infants. Int J Pediatr. 2021:6622598. 2021.
Article
31. Erickson SJ, Grauaug A, Gurrin L, Swaminathan M. Hypocarbia in the ventilated preterm infant and its effect on intraventricular haemorrhage and bronchopulmonary dysplasia. J Paediatr Child Health. 38:560–562. 2002.
Article
32. Evans N, Kluckow M. Early ductal shunting and intraventricular haemorrhage in ventilated preterm infants. Arch Dis Child Fetal Neonatal Ed. 75:F183–186. 1996.
Article
33. Fabres J, Carlo WA, Phillips V, Howard G, Ambalavanan N. Both extremes of arterial carbon dioxide pressure and the magnitude of fluctuations in arterial carbon dioxide pressure are associated with severe intraventricular hemorrhage in preterm infants. Pediatrics. 119:299–305. 2007.
Article
34. Ferreira DM, Girao ALA, AVS ES, Chaves EMC, de Almeida PC, Freire VS, et al. Application of a bundle in the prevention of peri-intraventricular hemorrhage in preterm newborns. J Perinat Neonatal Nurs. 34:E5–E11. 2020.
Article
35. Fogarty M, Osborn DA, Askie L, Seidler AL, Hunter K, Lui K, et al. Delayed vs early umbilical cord clamping for preterm infants: a systematic review and meta-analysis. Am J Obstet Gynecol. 218:1–18. 2018.
Article
36. Fortmann I, Mertens L, Boeckel H, Gruttner B, Humberg A, Astiz M, et al. A timely administration of antenatal steroids is highly protective against intraventricular hemorrhage: an observational multicenter cohort study of very low birth weight infants. Front Pediatr. 10:721355. 2022.
Article
37. Friedman WF. The intrinsic physiologic properties of the developing heart. Prog Cardiovasc Dis. 15:87–111. 1972.
Article
38. Gamaleldin I, Harding D, Siassakos D, Draycott T, Odd D. Significant intraventricular hemorrhage is more likely in very preterm infants born by vaginal delivery: a multi-centre retrospective cohort study. J Matern Fetal Neonatal Med. 32:477–482. 2019.
Article
39. Gross M, Engel C, Trotter A. Evaluating the effect of a neonatal care bundle for the prevention of intraventricular hemorrhage in preterm infants. Children (Basel). 8:257. 2021.
Article
40. Hamrick SEG, Sallmon H, Rose AT, Porras D, Shelton EL, Reese J, et al. Patent ductus arteriosus of the preterm infant. Pediatrics. 146:e20201209. 2020.
Article
41. Hatfield LA, Murphy N, Karp K, Polomano RC. A systematic review of behavioral and environmental interventions for procedural pain management in preterm infants. J Pediatr Nurs. 44:22–30. 2019.
Article
42. Helwich E, Rutkowska M, Bokiniec R, Gulczynska E, Hozejowski R. Intraventricular hemorrhage in premature infants with Respiratory Distress Syndrome treated with surfactant: incidence and risk factors in the prospective cohort study. Dev Period Med. 21:328–335. 2017.
43. Hemmati F, Sharma D, Namavar Jahromi B, Salarian L, Farahbakhsh N. Delayed cord clamping for prevention of intraventricular hemorrhage in preterm neonates: a randomized control trial. J Matern Fetal Neonatal Med. 35:3633–3639. 2022.
Article
44. Hübner ME, Ramirez R, Burgos J, Dominguez A, Tapia JL. Mode of delivery and antenatal steroids and their association with survival and severe intraventricular hemorrhage in very low birth weight infants. J Perinatol. 36:832–836. 2016.
Article
45. Humberg A, Härtel C, Paul P, Hanke K, Bossung V, Hartz A, et al. Delivery mode and intraventricular hemorrhage risk in very-low-birth-weight infants: observational data of the German Neonatal Network. Eur J Obstet Gynecol Reprod Biol. 212:144–149. 2017.
Article
46. Ikeda T, Ito Y, Mikami R, Matsuo K, Kawamura N, Yamoto A, et al. Fluctuations in internal cerebral vein and central side veins of preterm infants. Pediatr Int. 63:1319–1326. 2021.
Article
47. Jelin AC, Zlatnik MG, Kuppermann M, Gregorich SE, Nakagawa S, Clyman R. Clamp late and maintain perfusion (CLAMP) policy: delayed cord clamping in preterm infants. J Matern Fetal Neonatal Med. 29:1705–1709. 2016.
Article
48. Jim WT, Chiu NC, Chen MR, Hung HY, Kao HA, Hsu CH, et al. Cerebral hemodynamic change and intraventricular hemorrhage in very low birth weight infants with patent ductus arteriosus. Ultrasound Med Biol. 31:197–202. 2005.
Article
49. Kaiser JR, Gauss CH, Pont MM, Williams DK. Hypercapnia during the first 3 days of life is associated with severe intraventricular hemorrhage in very low birth weight infants. J Perinatol. 26:279–285. 2006.
Article
50. Kalani M, Shariat M, Khalesi N, Farahani Z, Ahmadi S. A comparison of early ibuprofen and indomethacin administration to prevent intraventricular hemorrhage among preterm infants. Acta Med Iran. 54:788–792. 2016.
51. Karagol BS, Calisici E, Zeybek C, Unay B, Yuksel S. The impact of initial hematocrit values after birth on peri-/intraventricular hemorrhage in extremely low birth weight neonates. Childs Nerv Syst. 38:109–114. 2022.
Article
52. Katheria AC, Szychowski JM, Essers J, Mendler MR, Dempsey EM, Schmolzer GM, et al. Early cardiac and cerebral hemodynamics with umbilical cord milking compared with delayed cord clamping in infants born preterm. J Pediatr. 223:51–56.e1. 2020.
Article
53. Kc A, Malqvist M, Rana N, Ranneberg LJ, Andersson O. Effect of timing of umbilical cord clamping on anaemia at 8 and 12 months and later neurodevelopment in late pre-term and term infants; a facility-based, randomized-controlled trial in Nepal. BMC Pediatr. 16:35. 2016.
Article
54. Khanafer-Larocque I, Soraisham A, Stritzke A, Al Awad E, Thomas S, Murthy P, et al. Intraventricular hemorrhage: risk factors and association with patent ductus arteriosus treatment in extremely preterm neonates. Front Pediatr. 7:408. 2019.
Article
55. Klingenberg C, Wheeler KI, McCallion N, Morley CJ, Davis PG. Volume-targeted versus pressure-limited ventilation in neonates. Cochrane Database Syst Rev. 10:CD003666. 2017.
Article
56. Kluckow M. The pathophysiology of low systemic blood flow in the preterm infant. Front Pediatr. 6:29. 2018.
Article
57. Kluckow M, Evans N. Low superior vena cava flow and intraventricular haemorrhage in preterm infants. Arch Dis Child Fetal Neonatal Ed. 82:F188–194. 2000.
Article
58. Kochan M, Leonardi B, Firestine A, McPadden J, Cobb D, Shah TA, et al. Elevated midline head positioning of extremely low birth weight infants: effects on cardiopulmonary function and the incidence of periventricular-intraventricular hemorrhage. J Perinatol. 39:54–62. 2019.
Article
59. Kooi EMW, Richter AE. Cerebral autoregulation in sick infants: current insights. Clin Perinatol. 47:449–467. 2020.
60. Kooi EMW, Verhagen EA, Elting JWJ, Czosnyka M, Austin T, Wong FY, et al. Measuring cerebrovascular autoregulation in preterm infants using near-infrared spectroscopy: an overview of the literature. Expert Rev Neurother. 17:801–818. 2017.
Article
61. Kumar Nair PA, Pai MG, Gazal HA, Da Costa DE, Al Khusaiby SM. Indomethacin prophylaxis for intraventricular hemorrhage in very low birth weight babies. Indian Pediatr. 41:551–558. 2004.
62. Leviton A, Fenton T, Kuban KC, Pagano M. Labor and delivery characteristics and the risk of germinal matrix hemorrhage in low birth weight infants. J Child Neurol. 6:35–40. 1991.
Article
63. Lightburn MH, Gauss CH, Williams DK, Kaiser JR. Cerebral blood flow velocities in extremely low birth weight infants with hypotension and infants with normal blood pressure. J Pediatr. 154:824–828. 2009.
Article
64. Ljustina S, Berisavac M, Kovacević-Vukolić L, VelickovićAleksić V, Marković N. Analysis of intracranial hemorrhage grade in preterm singleton pregnancies delivered vaginally or by cesarean section. Vojnosanit Pregl. 70:255–258. 2013.
Article
65. Lou HC, Lassen NA, Friis-Hansen B. Impaired autoregulation of cerebral blood flow in the distressed newborn infant. J Pediatr. 94:118–121. 1979.
Article
66. Luca A, Vinturache A, Ilea C, Avasiloaiei A, Paduraru L, Carauleanu A, et al. Birth trauma in preterm spontaneous vaginal and cesarean section deliveries: a 10-years retrospective study. PLoS One. 17:e0275726. 2022.
Article
67. Martini S, Czosnyka M, Smielewski P, Iommi M, Galletti S, Vitali F, et al. Clinical determinants of cerebrovascular reactivity in very preterm infants during the transitional period. Pediatr Res. 92:135–141. 2022.
Article
68. McGoldrick E, Stewart F, Parker R, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 12:CD004454. 2020.
Article
69. McLendon D, Check J, Carteaux P, Michael L, Moehring J, Secrest JW, et al. Implementation of potentially better practices for the prevention of brain hemorrhage and ischemic brain injury in very low birth weight infants. Pediatrics. 111(4 Pt 2):e497–503. 2003.
Article
70. Ment LR, Oh W, Ehrenkranz RA, Philip AG, Duncan CC, Makuch RW. Antenatal steroids, delivery mode, and intraventricular hemorrhage in preterm infants. Am J Obstet Gynecol. 172:795–800. 1995.
Article
71. Ment LR, Oh W, Ehrenkranz RA, Philip AG, Vohr B, Allan W, et al. Lowdose indomethacin and prevention of intraventricular hemorrhage: a multicenter randomized trial. Pediatrics. 93:543–550. 1994.
Article
72. Miller CJ, Prusakov P, Magers J, Speaks S, Sacic H, Escobar K, et al. Effects of prophylactic indomethacin on intraventricular hemorrhage and adverse outcomes in neonatal intensive care unit. J Perinatol. 42:1644–1648. 2022.
Article
73. Mitra S, Florez ID, Tamayo ME, Mbuagbaw L, Vanniyasingam T, Veroniki AA, et al. Association of placebo, indomethacin, ibuprofen, and acetaminophen with closure of hemodynamically significant patent ductus arteriosus in preterm infants: a systematic review and meta-analysis. JAMA. 319:1221–1238. 2018.
Article
74. Mittendorf R, Besinger R, Santillan M, Gianopoulos J. When used in the circumstance of preterm labor, is there a paradoxical effect of varying exposures to magnesium sulfate (MgSO4) on the developing human brain? Am J Obstet Gynecol. 193(6 Suppl):S65. 2005.
Article
75. Mittendorf R, Dambrosia J, Dammann O, Pryde PG, Lee KS, Ben-Ami TE, et al. Association between maternal serum ionized magnesium levels at delivery and neonatal intraventricular hemorrhage. J Pediatr. 140:540–546. 2002.
Article
76. Moriette G, Paris-Llado J, Walti H, Escande B, Magny JF, Cambonie G, et al. Prospective randomized multicenter comparison of high-frequency oscillatory ventilation and conventional ventilation in preterm infants of less than 30 weeks with respiratory distress syndrome. Pediatrics. 107:363–372. 2001.
Article
77. Mullaart RA, Hopman JC, Rotteveel JJ, Stoelinga GB, De Haan AF, Daniels O. Cerebral blood flow velocity and pulsation in neonatal respiratory distress syndrome and periventricular hemorrhage. Pediatr Neurol. 16:118–125. 1997.
Article
78. Noone MA, Sellwood M, Meek JH, Wyatt JS. Postnatal adaptation of cerebral blood flow using near infrared spectroscopy in extremely preterm infants undergoing high-frequency oscillatory ventilation. Acta Paediatr. 92:1079–1084. 2003.
Article
79. Noori S, Seri I. Hemodynamic antecedents of peri/intraventricular hemorrhage in very preterm neonates. Semin Fetal Neonatal Med. 20:232–237. 2015.
Article
80. Ohlsson A, Shah PS. Paracetamol (acetaminophen) for patent ductus arteriosus in preterm or low birth weight infants. Cochrane Database Syst Rev. 4:CD010061. 2018.
Article
81. Okulu E, Haskologlu S, Guloglu D, Kostekci E, Erdeve O, Atasay B, et al. Effects of umbilical cord management strategies on stem cell transfusion, delivery room adaptation, and cerebral oxygenation in term and late preterm infants. Front Pediatr. 10:838444. 2022.
82. Pan I, Shah PA, Singh J, Kelly KN, Bondi DS. Comparison of neonatal outcomes with and without prophylaxis with indomethacin in premature neonates. J Pediatr Pharmacol Ther. 26:478–483. 2021.
Article
83. Panerai RB, Kelsall AW, Rennie JM, Evans DH. Cerebral autoregulation dynamics in premature newborns. Stroke. 26:74–80. 1995.
Article
84. Parker LA. Part 1: early recognition and treatment of birth trauma: injuries to the head and face. Adv Neonatal Care. 5:288–297. quiz 298-300. 2005.
85. Persad N, Kelly E, Amaral N, Neish A, Cheng C, Fan CS, et al. Impact of a "Brain Protection Bundle" in reducing severe intraventricular hemorrhage in preterm infants <30 weeks GA: a retrospective single centre study. Children (Basel). 8:983. 2021.
Article
86. Pinto Cardoso G, Houivet E, Marchand-Martin L, Kayem G, Sentilhes L, Ancel PY, et al. Association of intraventricular hemorrhage and death with tocolytic exposure in preterm infants. JAMA Netw Open. 1:e182355. 2018.
Article
87. Pishva N, Parsa G, Saki F, Saki M, Saki MR. Intraventricular hemorrhage in premature infants and its association with pneumothorax. Acta Med Iran. 50:473–476. 2012.
88. Piteaud I, Abdennour L, Icke C, Stany I, Lescot T, Puybasset L. Superior vena cava syndrome: cause of secondary raise of intracranial pressure after traumatic brain injury. Ann Fr Anesth Reanim. 27:850–853. 2008.
89. Poryo M, Boeckh JC, Gortner L, Zemlin M, Duppre P, Ebrahimi-Fakhari D, et al. Ante-, peri- and postnatal factors associated with intraventricular hemorrhage in very premature infants. Early Hum Dev. 116:1–8. 2018.
Article
90. Rahman S, Ullah M, Ali A, Afridi N, Bashir H, Amjad Z, et al. Fetal outcomes in preterm cesarean sections. Cureus. 14:e27607. 2022.
Article
91. Raybaud C. Normal and abnormal embryology and development of the intracranial vascular system. Neurosurg Clin N Am. 21:399–426. 2010.
Article
92. Rhee CJ, Fraser CD 3rd, Kibler K, Easley RB, Andropoulos DB, Czosnyka M, et al. The ontogeny of cerebrovascular pressure autoregulation in premature infants. J Perinatol. 34:926–931. 2014.
Article
93. Riskin A, Riskin-Mashiah S, Bader D, Kugelman A, Lerner-Geva L, Boyko V, et al. Delivery mode and severe intraventricular hemorrhage in single, very low birth weight, vertex infants. Obstet Gynecol. 112:21–28. 2008.
Article
94. Rozé JC, Cambonie G, Marchand-Martin L, Gournay V, Durrmeyer X, Durox M, et al. Association between early screening for patent ductus arteriosus and in-hospital mortality among extremely preterm infants. JAMA. 313:2441–2448. 2015.
Article
95. Sankar MN, Bhombal S, Benitz WE. PDA: to treat or not to treat. Congenit Heart Dis. 14:46–51. 2019.
Article
96. Schreiner C, Suter S, Watzka M, Hertfelder HJ, Schreiner F, Oldenburg J, et al. Genetic variants of the vitamin K dependent coagulation system and intraventricular hemorrhage in preterm infants. BMC Pediatr. 14:219. 2014.
Article
97. Schulz G, Keller E, Haensse D, Arlettaz R, Bucher HU, Fauchere JC. Slow blood sampling from an umbilical artery catheter prevents a decrease in cerebral oxygenation in the preterm newborn. Pediatrics. 111:e73–76. 2003.
Article
98. Semberova J, Sirc J, Miletin J, Kucera J, Berka I, Sebkova S, et al. Spontaneous closure of patent ductus arteriosus in infants ≤1500 g. Pediatrics. 140:e20164258. 2017.
Article
99. Seri I. Management of hypotension and low systemic blood flow in the very low birth weight neonate during the first postnatal week. J Perinatol 26 Suppl. 1:S8–S13. discussion S22-S23. 2006.
Article
100. Shah V, Hodgson K, Seshia M, Dunn M, Schmolzer GM. Golden hour management practices for infants <32 weeks gestational age in Canada. Paediatr Child Health. 23:e70–e76. 2018.
Article
101. Soul JS, Hammer PE, Tsuji M, Saul JP, Bassan H, Limperopoulos C, et al. Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants. Pediatr Res. 61:467–473. 2007.
Article
102. Su BH, Lin HY, Chiu HY, Tsai ML, Chen YT, Lu IC. Therapeutic strategy of patent ductus arteriosus in extremely preterm infants. Pediatr Neonatol. 61:133–141. 2020.
Article
103. Szpecht D, Al-Saad SR, Karbowski LM, Kosik K, Kurzawińska G, Szymankiewicz M, et al. Role of fibronectin-1 polymorphism genes with the pathogenesis of intraventricular hemorrhage in preterm infants. Childs Nerv Syst. 36:1729–1736. 2020.
Article
104. Szpecht D, Gadzinowski J, Seremak-Mrozikiewicz A, Kurzawińska G, Drews K, Szymankiewicz M. The significance of polymorphisms in genes encoding Il-1β, Il-6, TNFα, and Il-1RN in the pathogenesis of intraventricular hemorrhage in preterm infants. Childs Nerv Syst. 33:1905–1916. 2017.
Article
105. Szpecht D, Gadzinowski J, Seremak-Mrozikiewicz A, Kurzawińska G, Szymankiewicz M. Role of endothelial nitric oxide synthase and endothelin-1 polymorphism genes with the pathogenesis of intraventricular hemorrhage in preterm infants. Sci Rep. 7:42541. 2017.
Article
106. Takahashi Y, Harada K, Kishkurno S, Arai H, Ishida A, Takada G. Postnatal left ventricular contractility in very low birth weight infants. Pediatr Cardiol. 18:112–117. 1997.
Article
107. Thewissen L, Naulaers G, Hendrikx D, Caicedo A, Barrington K, Boylan G, et al. Cerebral oxygen saturation and autoregulation during hypotension in extremely preterm infants. Pediatr Res. 90:373–380. 2021.
Article
108. Thornburg CD, Erickson SW, Page GP, Clark EAS, DeAngelis MM, Hartnett ME, et al. Genetic predictors of severe intraventricular hemorrhage in extremely low-birthweight infants. J Perinatol. 41:286–294. 2021.
Article
109. Toledo JD, Rodilla S, Perez-Iranzo A, Delgado A, Maazouzi Y, Vento M. Umbilical cord milking reduces the risk of intraventricular hemorrhage in preterm infants born before 32 weeks of gestation. J Perinatol. 39:547–553. 2019.
Article
110. Tomotaki S, Iwanaga K, Hanaoka S, Tomotaki H, Matsukura T, Niwa F, et al. Antenatal glucocorticoids reduce the incidence of refractory hypotension in low birthweight infants during the early neonatal period, but do not affect it beyond this time. Am J Perinatol. 38:1057–1061. 2021.
Article
111. Toyoshima K, Kawataki M, Ohyama M, Shibasaki J, Yamaguchi N, Hoshino R, et al. Tailor-made circulatory management based on the stress-velocity relationship in preterm infants. J Formos Med Assoc. 112:510–517. 2013.
Article
112. Tsuji M, Saul JP, du Plessis A, Eichenwald E, Sobh J, Crocker R, et al. Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics. 106:625–632. 2000.
Article
113. van Beek PE, Groenendaal F, Broeders L, Dijk PH, Dijkman KP, van den Dungen FAM, et al. Survival and causes of death in extremely preterm infants in the Netherlands. Arch Dis Child Fetal Neonatal Ed. 106:251–257. 2021.
Article
114. van Bel F, Mintzer JP. Monitoring cerebral oxygenation of the immature brain: a neuroprotective strategy? Pediatr Res. 84:159–164. 2018.
Article
115. van der Laan ME, Roofthooft MT, Fries MW, Berger RM, Schat TE, van Zoonen AG, et al. A hemodynamically significant patent ductus arteriosus does not affect cerebral or renal tissue oxygenation in preterm infants. Neonatology. 110:141–147. 2016.
Article
116. Verma PK, Panerai RB, Rennie JM, Evans DH. Grading of cerebral autoregulation in preterm and term neonates. Pediatr Neurol. 23:236–242. 2000.
Article
117. Vesoulis ZA, Flower AA, Zanelli S, Rambhia A, Abubakar M, Whitehead HV, et al. Blood pressure extremes and severe IVH in preterm infants. Pediatr Res. 87:69–73. 2020.
Article
118. Vesoulis ZA, Liao SM, Mathur AM. Gestational age-dependent relationship between cerebral oxygen extraction and blood pressure. Pediatr Res. 82:934–939. 2017.
Article
119. Vinukonda G, Dummula K, Malik S, Hu F, Thompson CI, Csiszar A, et al. Effect of prenatal glucocorticoids on cerebral vasculature of the developing brain. Stroke. 41:1766–1773. 2010.
Article
120. Wardle SP, Yoxall CW, Weindling AM. Determinants of cerebral fractional oxygen extraction using near infrared spectroscopy in preterm neonates. J Cereb Blood Flow Metab. 20:272–279. 2000.
Article
121. Wei JC, Catalano R, Profit J, Gould JB, Lee HC. Impact of antenatal steroids on intraventricular hemorrhage in very-low-birth weight infants. J Perinatol. 36:352–356. 2016.
Article
122. Wolf HT, Weber T, Schmidt S, Norman M, Varendi H, Piedvache A, et al. Mode of delivery and adverse short- and long-term outcomes in vertex-presenting very preterm born infants: a European populationbased prospective cohort study. J Perinat Med. 49:923–931. 2021.
Article
123. Wong FY, Leung TS, Austin T, Wilkinson M, Meek JH, Wyatt JS, et al. Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy. Pediatrics. 121:e604–e611. 2008.
Article
124. Xu H, Hu F, Sado Y, Ninomiya Y, Borza DB, Ungvari Z, et al. Maturational changes in laminin, fibronectin, collagen IV, and perlecan in germinal matrix, cortex, and white matter and effect of betamethasone. J Neurosci Res. 86:1482–1500. 2008.
Article
125. Yao SL, Smit E, Odd D. The effectiveness of interventions to prevent intraventricular haemorrhage in premature infants: a systematic review and network meta-analysis. J Neonatal Perinatal Med. 16:5–20. 2023.
Article
126. Committee Opinion No. 455. magnesium sulfate before anticipated preterm birth for neuroprotection. Obstet Gynecol. 115:669–671. 2010.
127. Committee Opinion No 652. magnesium sulfate use in obstetrics. Obstet Gynecol. 127:e52–e53. 2016.
Full Text Links
  • JKNS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr