Ann Clin Microbiol.  2023 Mar;26(1):1-9. 10.5145/ACM.2023.26.1.1.

Syndromic testing for sexually transmitted infection: current and future demand

Affiliations
  • 1Department of Laboratory Medicine, Seoul St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea

Abstract

Sexually transmitted infections (STIs) are a major global public health problem, with significant social burden worldwide. Accurate and appropriate diagnosis and treatment of STIs are important for preventing the transmission of STIs as well as major health consequences of untreated STIs, such as infertility and certain cancer. For diagnosis of STIs, the application of conventional culture and immunoassays is limited by their low sensitivity and long turnaround time. Nucleic acid amplification tests for STIs allow for syndromic tests for multiple pathogens simultaneously and show high sensitivity with a short turnaround time. In this review, we discuss the characteristics of commercially available multiplex molecular platforms and the features needed in next-generation syndromic tests for STIs.

Keyword

Sexually transmitted infection; Nucleic acid amplification test; Syndromic test

Reference

1. WHO. Sexually Transmitted Infections (STIs). https://www.who.int/news-room/fact-sheets/ detail/sexually-transmitted-infections-(stis) [Online] (last visited on 20 December 2022). .
2. WHO. Global Health Sector Strategy On Sexually Transmitted Infections, 2016-2021. World Health Organization;2016:8.. .
3. Kraus SJ. Culture methods for Neisseria gonorrhoea. Arch Androl 1979;3:343-9. .
4. Peng L, Chen JL, Wang D. Progress and perspectives in point of care testing for urogenital Chlamydia trachomatis infection: a review. Med Sci Monit 2020;26:e920873. .
5. Meyer T and Buder S. The laboratory diagnosis of Neisseria gonorrhoeae: current testing and future demands. Pathogens 2020;9:91. .
6. Gaydos CA, Klausner JD, Pai NP, Kelly H, Coltart C, Peeling RW. Rapid and point-of-care tests for the diagnosis of Trichomonas vaginalis in women and men. 2017;93:S31-5. .
7. Herring A, Ballard R, Mabey D, Peeling RW. Evaluation of rapid diagnostic tests: chlamydia and gonorrhoea. Nat Rev Microbiol 2006;4:S41-8. .
8. Seña AC, White BL, Sparling PF. Novel Treponema pallidum serologic tests: a paradigm shift in syphilis screening for the 21st century. Clin Infect Dis 2010;51:700-8. .
9. Nsuami M. Recommendations for screening high school students for chlamydia and gonorrhea in San Francisco. Sex Transm Dis 2003;30:367. .
10. Ford CA, Viadro CI, Miller WC. Testing for chlamydial and gonorrheal infections outside of clinic settings: a summary of the literature. Sex Transm Dis 2004;31:38-51. .
11. Dumkow LE, Worden LJ, Rao SN. Syndromic diagnostic testing: a new way to approach patient care in the treatment of infectious diseases. J Antimicrob Chemother 2021;76:iii4-11. .
12. Ramanan P, Bryson AL, Binnicker MJ, Pritt BS, Patel R. Syndromic panel-based testing in clinical microbiology. Clin Microbiol Rev 2018;31:e00024-17. .
13. Popowitch EB, O'Neill SS, Miller MB. Comparison of the Biofire FilmArray RP, Genmark eSensor RVP, Luminex xTAG RVPv1, and Luminex xTAG RVP fast multiplex assays for detection of respiratory viruses. J Clin Microbiol 2013;51:1528-33. .
14. Ward C, Stocker K, Begum J, Wade P, Ebrahimsa U, Goldenberg SD. Performance evaluation of the Verigene® (Nanosphere) and FilmArray® (BioFire®) molecular assays for identification of causative organisms in bacterial bloodstream infections. Eur J Clin Microbiol Infect Dis 2015;34:487-96. .
15. WHO. Guidelines for the management of symptomatic sexually transmitted infections. World Health Organization;2021. .
16. Nelson K, Joseph A, Wiesneth R, Lander R, Hwang D, Jacobson C, et al. P058 Design and performance of the alinity m STI assay for the detection of CT, NG, TV, and MG. Sex Transm Infect 2019;95:A103. .
17. Hristov A, Galindo L, Gentil L, Scarpelli L, Santiago J, Levi J. P268 Clinical performance assessment of the Alinity m STI assay. Sex Transm Infect 2021;97:A129-30. .
18. Huh HJ, Ki CS, Yun SA, Lee J, Oh GY, Lee NS, et al. Comparison between DiaPlexQ™ STI6 and GeneFinder™ STD I/STD II multiplex Real-time PCR Kits in the detection of six sexually transmitted disease pathogens. J Clin Lab Anal 2019;33:e22703. .
19. Park HJ, Kim YT, Moon JY, Jin CE, Ko KH, Lee SH, et al. Trend analysis of the profiles of 12 sexually transmitted disease pathogens in the Republic of Korea in 2019. Inquiry 2021;58:469580211065684. .
20. CDC. Sexually transmitted diseases treatment guidelines. Ann Emerg Med 2011;58:67-8. .
21. Xie TA, Liu YL, Meng RC, Liu XS, Fang KY, Deng ST, et al. Evaluation of the diagnostic efficacy of Xpert CT/NG for Chlamydia trachomatis and Neisseria gonorrhoeae. Biomed Res Int 2020;2020:2892734. .
22. Dukers-Muijrers NH, Schachter J, van Liere GA, Wolffs PF, Hoebe CJ. What is needed to guide testing for anorectal and pharyngeal Chlamydia trachomatis and Neisseria gonorrhoeae in women and men? Evidence and opinion. BMC Infect Dis 2015;15:533. .
23. Cristillo AD, Bristow CC, Peeling R, Van Der Pol B, de Cortina SH, Dimov IK, et al. Point-ofcare sexually transmitted infection diagnostics: proceedings of the STAR sexually transmitted infection-clinical trial group programmatic meeting. Sex Transm Dis 2017;44:211-8. .
24. Herbst de Cortina S, Bristow CC, Joseph Davey D, Klausner JD. A systematic review of point of care testing for Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis. Infect Dis Obstet Gynecol 2016;2016:4386127. .
25. Tucker JD, Bien CH, Peeling RW. Point-of-care testing for sexually transmitted infections: recent advances and implications for disease control. Curr Opin Infect Dis 2013;26:73-9. .
26. Barrow RY, Ahmed F, Bolan GA, Workowski KA. Recommendations for providing quality sexually transmitted diseases clinical services, 2020. MMWR Recomm Rep 2020;68:1-20. .
27. Peeling RW, Holmes KK, Mabey D, Ronald A. Rapid tests for sexually transmitted infections (STIs): the way forward. Sex Transm Infect 2006;82 Suppl 5:v1-6. .
28. Hsieh YH, Gaydos CA, Hogan MT, Uy OM, Jackman J, Jett-Goheen M, et al. What qualities are most important to making a point of care test desirable for clinicians and others offering sexually transmitted infection testing? PLoS One 2011;6:e19263. .
29. Cosentino LA, Danby CS, Rabe LK, Macio I, Meyn LA, Wiesenfeld HC, et al. Use of nucleic acid amplification testing for diagnosis of extragenital sexually transmitted infections. J Clin Microbiol 2017;55:2801-7. .
30. Gettinger J, Van Wagoner N, Daniels B, Boutwell A, Van Der Pol B. Patients are willing to wait for rapid sexually transmitted infection results in a university student health clinic. Sex Transm Dis 2020;47:67-9. .
31. Van Der Pol B and Gaydos CA. A profile of the binx health io® molecular point-of-care test for chlamydia and gonorrhea in women and men. Expert Rev Mol Diagn 2021;21:861-8. .
32. Van Der Pol B, Taylor SN, Mena L, Lebed J, McNeil CJ, Crane L, et al. Evaluation of the performance of a point-of-care test for chlamydia and gonorrhea. JAMA Netw Open 2020;3:e204819. .
33. CDC. Antibiotic Resistance Threats in the United States, 2019. Atlanta: U.S. Department of Health and Human Services; 2019. .
34. Lewis DA. Global resistance of Neisseria gonorrhoeae: when theory becomes reality. Curr Opin Infect Dis 2014;27:62-7. .
35. Wi T, Lahra MM, Ndowa F, Bala M, Dillon JR, Ramon-Pardo P, et al. Antimicrobial resistance in Neisseria gonorrhoeae: global surveillance and a call for international collaborative action. PLoS Med 2017;14:e1002344. .
36. CDC. Update to CDC's sexually transmitted diseases treatment guidelines, 2006: fluoroquinolones no longer recommended for treatment of gonococcal infections. MMWR Morb Mortal Wkly Rep 2007;56:332-6. .
37. Lee H, Suh YH, Lee S, Kim YK, Han MS, Bae HG, et al. Emergence and spread of cephalosporin-resistant Neisseria gonorrhoeae with mosaic penA alleles, South Korea, 20122017. Emerg Infect Dis 2019;25:416-24. .
38. Gernert KM, Seby S, Schmerer MW, Thomas JC, Pham CD, Cyr SS, et al. Azithromycin susceptibility of Neisseria gonorrhoeae in the USA in 2017: a genomic analysis of surveillance data. Lancet Microbe 2020;1:e154-64. .
39. Clegg A, Passey M, Yoannes M, Michael A. High rates of genital mycoplasma infection in the highlands of Papua New Guinea determined both by culture and by a commercial detection kit. J Clin Microbiol 1997;35:197-200. .
40. Waites KB, Katz B, Schelonka RL. Mycoplasmas and ureaplasmas as neonatal pathogens. Clin Microbiol Rev 2005;18:757-89. .
41. Murtha AP and Edwards JM. The role of Mycoplasma and Ureaplasma in adverse pregnancy outcomes. Obstet Gynecol Clin 2014;41:615-27. .
42. Song T, Ye A, Xie X, Huang J, Ruan Z, Kong Y, et al. Epidemiological investigation and antimicrobial susceptibility analysis of ureaplasma species and Mycoplasma hominis in outpatients with genital manifestations. J Clin Pathol 2014;67:817-20. .
43. Valentine-King MA and Brown MB. Antibacterial resistance in Ureaplasma species and Mycoplasma hominis isolates from urine cultures in college-aged females. Antimicrob Agents Chemother 2017;61:e01104-17. .
44. Lis R, Rowhani-Rahbar A, Manhart LE. Mycoplasma genitalium infection and female reproductive tract disease: a meta-analysis. Clin Infect Dis 2015;61:418-26. .
45. Taylor-Robinson D and Jensen JS. Mycoplasma genitalium: from chrysalis to multicolored butterfly. Clin Microbiol Rev 2011;24:498-514. .
46. Jensen JS, Cusini M, Gomberg M, Moi H. 2016 European guideline on Mycoplasma genitalium infections. J Eur Acad Dermatol Venereol 2016;30:1650-6. .
47. Korean Guideline for Sexually Transmitted Infection. 2nd ed. Korean Centers for Disease Control and Prevention; 2016. .
48. Jensen JS. Protocol for the detection of Mycoplasma genitalium by PCR from clinical specimens and subsequent detection of macrolide resistance-mediating mutations in region V of the 23S rRNA gene. In: MacKenzie C and Henrich B, eds. Diagnosis of Sexually Transmitted Diseases. Totowa; Humana Press, 2012:129-39. .
49. Tagg KA, Jeoffreys NJ, Couldwell DL, Donald JA, Gilbert GL. Fluoroquinolone and macrolide resistance-associated mutations in Mycoplasma genitalium. J Clin Microbiol 2013;51:2245-9. .
50. Hadad R, Cole MJ, Ebeyan S, Jacobsson S, Tan LY, Golparian D, et al. Evaluation of the SpeeDx ResistancePlus® GC and SpeeDx GC 23S 2611 (beta) molecular assays for prediction of antimicrobial resistance/susceptibility to ciprofloxacin and azithromycin in Neisseria gonorrhoeae. J Antimicrob Chemother 2021;76:84-90. .
51. Gardette M, Hénin N, Roy CL, Guiraud J, Touati A, Bébéar C, et al. Clinical performance of three commercial molecular diagnostic assays for the detection of fluoroquinolone resistanceassociated mutations in Mycoplasma genitalium. J Clin Microbiol 2022;60:e01135-22. .
52. Sweeney EL, Lowry K, Ebeyan S, Lundgren M, Whiley DM. Evaluation of the SpeeDx MG parC (Beta) PCR assay for rapid detection of Mycoplasma genitalium quinolone resistanceassociated mutations. J Clin Microbiol 2020;58:e01432-20. .
53. Shipitsyna E, Khusnutdinova T, Budilovskaya O, Shedko E, Goloveshkina E, Khayrullina G, et al. Performance of the first commercial dual resistance assay, AmpliSens Mycoplasma genitalium-ML/FQ-Resist-FL, for detection of potential macrolide and quinolone resistanceassociated mutations and prevalence of M. genitalium resistance mutations in St. Petersburg, Russia. Sex Transm Infect 2022 Jun 16 [Epub]. Available from: https://sti.bmj.com/content/ early/2022/06/15/sextrans-2021-055249 .
Full Text Links
  • ACM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr