Acute Crit Care.  2022 Nov;37(4):610-617. 10.4266/acc.2022.00696.

Diet-related complications according to the timing of enteral nutrition support in patients who recovered from out-of-hospital cardiac arrest: a propensity score matched analysis

Affiliations
  • 1Department of Emergency Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
  • 2Department of Biostatistics, Yonsei University Wonju College of Medicine, Wonju, Korea

Abstract

Background
A proper nutritional plan for resuscitated patients is important in intensive care; however, specific nutritional guidelines have not yet been established. This study aimed to determine the incidence of diet-related complications that were affected by the timing of enteral nutrition in resuscitated patients after cardiac arrest. Methods: This retrospective and 1:1 propensity score matching study involved patients who recovered after nontraumatic, out-of-hospital cardiac arrest at a tertiary hospital. Patients were divided into an early nutrition support (ENS) group and a delayed nutrition support (DNS) group according to the nutritional support time within 48 hours after admission. The incidence of major clinical complications was compared between the groups. Results: A total of 46 patients (ENS: 23, DNS: 23) were enrolled in the study. There were no differences in body mass index, comorbidity, and time of cardiopulmonary resuscitation between the two groups. There were 9 patients (ENS: 4, DNS: 5) with aspiration pneumonia; 4 patients (ENS: 2, DNS: 2) with regurgitation; 1 patient (ENS: 0, DNS: 1) with ileus; 21 patients (ENS: 10, DNS: 11) with fever; 13 patients (ENS: 8, DNS: 5) with hypoglycemia; and 20 patients (ENS: 11, DNS: 9) with hyperglycemia. The relative risk of each complication during post-resuscitation care was no different between groups. Conclusions: There was a similar incidence of diet-related complications during post cardiac arrest care according to the timing of enteral nutrition.


Figure

  • Figure 1. Study enrollment chart. OHCA: out-of-hospital cardiac arrest; ED: emergency department; CPR: cardiopulmonary resuscitation.


Reference

1. Kang Y. Management of post-cardiac arrest syndrome. Acute Crit Care. 2019; 34:173–8.
Article
2. Panchal AR, Bartos JA, Cabañas JG, Donnino MW, Drennan IR, Hirsch KG, et al. Part 3: adult basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2020; 142(16_suppl_2):S366–468.
3. Choi YH, Lee DH, Oh JH, Wee JH, Jang TC, Choi SP, et al. Renal replacement therapy is independently associated with a lower risk of death in patients with severe acute kidney injury treated with targeted temperature management after out-of-hospital cardiac arrest. Crit Care. 2020; 24:115.
Article
4. Tan BK. Extracorporeal membrane oxygenation in cardiac arrest. Singapore Med J. 2017; 58:446–8.
Article
5. Yannopoulos D, Bartos J, Raveendran G, Walser E, Connett J, Murray TA, et al. Advanced reperfusion strategies for patients with out-of-hospital cardiac arrest and refractory ventricular fibrillation (ARREST): a phase 2, single centre, open-label, randomised controlled trial. Lancet. 2020; 396:1807–16.
Article
6. Castedal M, Björnsson E, Abrahamsson H. Effects of midazolam on small bowel motility in humans. Aliment Pharmacol Ther. 2000; 14:571–7.
Article
7. Nimmo WS, Heading RC, Wilson J, Tothill P, Prescott LF. Inhibition of gastric emptying and drug absorption by narcotic analgesics. Br J Clin Pharmacol. 1975; 2:509–13.
Article
8. Tamion F, Hamelin K, Duflo A, Girault C, Richard JC, Bonmarchand G. Gastric emptying in mechanically ventilated critically ill patients: effect of neuromuscular blocking agent. Intensive Care Med. 2003; 29:1717–22.
Article
9. Maday KR. The importance of nutrition in critically ill patients. JAAPA. 2017; 30:32–7.
Article
10. Mehta Y, Sunavala JD, Zirpe K, Tyagi N, Garg S, Sinha S, et al. Practice guidelines for nutrition in critically ill patients: a relook for Indian scenario. Indian J Crit Care Med. 2018; 22:263–73.
Article
11. Taylor BE, McClave SA, Martindale RG, Warren MM, Johnson DR, Braunschweig C, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). Crit Care Med. 2016; 44:390–438.
Article
12. Howes D, Gray SH, Brooks SC, Boyd JG, Djogovic D, Golan E, et al. Canadian Guidelines for the use of targeted temperature management (therapeutic hypothermia) after cardiac arrest: a joint statement from The Canadian Critical Care Society (CCCS), Canadian Neurocritical Care Society (CNCCS), and the Canadian Critical Care Trials Group (CCCTG). Resuscitation. 2016; 98:48–63.
Article
13. Hoffmann M, Schwarz CM, Fürst S, Starchl C, Lobmeyr E, Sendlhofer G, et al. Risks in management of enteral nutrition in intensive care units: a literature review and narrative synthesis. Nutrients. 2020; 13:82.
Article
14. Joo WJ, Ide K, Kawasaki Y, Takeda C, Seki T, Usui T, et al. Effectiveness and safety of early enteral nutrition for patients who received targeted temperature management after out-of-hospital cardiac arrest. Resuscitation. 2019; 135:191–6.
Article
15. Taylor SJ, Fettes SB, Jewkes C, Nelson RJ. Prospective, randomized, controlled trial to determine the effect of early enhanced enteral nutrition on clinical outcome in mechanically ventilated patients suffering head injury. Crit Care Med. 1999; 27:2525–31.
Article
16. Ichimaru S. Methods of enteral nutrition administration in critically ill patients: continuous, cyclic, intermittent, and bolus feeding. Nutr Clin Pract. 2018; 33:790–5.
Article
17. Madden LK, Hill M, May TL, Human T, Guanci MM, Jacobi J, et al. The implementation of targeted temperature management: an evidence-based guideline from the Neurocritical Care Society. Neurocrit Care. 2017; 27:468–87.
Article
18. Tian F, Heighes PT, Allingstrup MJ, Doig GS. Early enteral nutrition provided within 24 hours of ICU admission: a meta-analysis of randomized controlled trials. Crit Care Med. 2018; 46:1049–56.
19. Edington J, Boorman J, Durrant ER, Perkins A, Giffin CV, James R, et al. Prevalence of malnutrition on admission to four hospitals in England. Clin Nutr. 2000; 19:191–5.
Article
20. Correia MI, Waitzberg DL. The impact of malnutrition on morbidity, mortality, length of hospital stay and costs evaluated through a multivariate model analysis. Clin Nutr. 2003; 22:235–9.
Article
21. Alberda C, Gramlich L, Jones N, Jeejeebhoy K, Day AG, Dhaliwal R, et al. The relationship between nutritional intake and clinical outcomes in critically ill patients: results of an international multicenter observational study. Intensive Care Med. 2009; 35:1728–37.
Article
22. Mogensen KM, Robinson MK, Casey JD, Gunasekera NS, Moromizato T, Rawn JD, et al. Nutritional status and mortality in the critically ill. Crit Care Med. 2015; 43:2605–15.
Article
23. Kim YM, Jeung KW, Kim WY, Park YS, Oh JS, You YH, et al. 2020 Korean guidelines for cardiopulmonary resuscitation. Part 5. Post-cardiac arrest care. Clin Exp Emerg Med. 2021; 8(S):S41–64.
Article
24. Martin M, Reignier J, Le Thuaut A, Lacherade JC, Martin-Lefèvre L, Fiancette M, et al. Nutrition during targeted temperature management after cardiac arrest: observational study of neurological outcomes and nutrition tolerance. JPEN J Parenter Enteral Nutr. 2020; 44:138–45.
Article
25. Gutierrez A, Carlson C, Kalra R, Elliott AM, Yannopoulos D, Bartos JA. Outcomes associated with delayed enteral feeding after cardiac arrest treated with veno-arterial extracorporeal membrane oxygenation and targeted temperature management. Resuscitation. 2021; 164:20–6.
Article
26. Reintam Blaser A, Starkopf J, Alhazzani W, Berger MM, Casaer MP, Deane AM, et al. Early enteral nutrition in critically ill patients: ESICM clinical practice guidelines. Intensive Care Med. 2017; 43:380–98.
Article
Full Text Links
  • ACC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr