1. Talie A, Taddele M, Alemayehu M. Magnitude of low birth weight and associated factors among newborns delivered in Dangla Primary Hospital, Amhara Regional State, Northwest Ethiopia, 2017. J Pregnancy. 2019; 2019:3587239.
https://doi.org/10.1155/2019/3587239
.
3. Ranjbaran M, Jafary-Manesh H, Sajjadi-Hazaneh L, Eisaabadi S, Talkhabi S, Sadat Khoshniyat A. Prevalence of low birth weight and some associated factors in Markazi province, 2013–2014. World J Med Sci. 2015; 12(3):252–8.
https://doi.org/10.5829/idosi.wjms.2015.12.3.93203
.
4. Sabbaghchi M, Jalali R, Mohammadi M. A systematic review and meta-analysis on the prevalence of low birth weight infants in Iran. J Pregnancy. 2020; 2020:3686471.
https://doi.org/10.1155/2020/3686471
.
6. Demelash H, Motbainor A, Nigatu D, Gashaw K, Melese A. Risk factors for low birth weight in Bale zone hospitals, South-East Ethiopia: a case-control study. BMC Pregnancy Childbirth. 2015; 15:264.
https://doi.org/10.1186/s12884-015-0677-y
.
8. Ahmadi-Jouybari T, Najafi-Ghobadi S, Karami-Matin R, Najafian-Ghobadi S, Najafi-Ghobadi K. Investigating factors affecting the interval between a burn and the start of treatment using data mining methods and logistic regression. BMC Med Res Methodol. 2021; 21(1):71.
https://doi.org/10.1186/s12874-021-01270-5
.
9. Najafi-Ghobadi S, Najafi-Ghobadi K, Tapak L, Aghaei A. Application of data mining techniques and logistic regression to model drug use transition to injection: a case study in drug use treatment centers in Kermanshah Province, Iran. Subst Abuse Treat Prev Policy. 2019; 14(1):55.
https://doi.org/10.1186/s13011-019-0242-1
.
11. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002; 16:321–57.
https://doi.org/10.1613/jair.953
.
13. abdulaziz Mohsen A, Alsurori M, Aldobai B, Mohsen GA. New approach to medical diagnosis using artificial neural network and decision tree algorithm: application to dental diseases. Int J Inf Eng Electron Bus. 2019; 11(4):52–60.
https://doi.org/10.5815/ijieeb.2019.04.06
.
14. Sandhu AK, Batth RS. Software reuse analytics using integrated random forest and gradient boosting machine learning algorithm. Softw Pract Exp. 2021; 51(4):735–47.
https://doi.org/10.1002/spe.2921
.
15. Suzuki K. Artificial neural networks: methodological advances and biomedical applications. Rijeka, Croatia: InTech;2011.
16. Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics Proteomics. 2018; 15(1):41–51.
https://doi.org/10.21873/cgp.20063
.
17. Alanazi HO, Abdullah AH, Qureshi KN. A critical review for developing accurate and dynamic predictive models using machine learning methods in medicine and health care. J Med Syst. 2017; 41(4):69.
https://doi.org/10.1007/s10916-017-0715-6
.
18. Therneau TM, Atkinson EJ. An introduction to recursive partitioning using the RPART routines. Rochester (MN): Mayo Foundation;1997.
20. Khan W, Zaki N, Masud MM, Ahmad A, Ali L, Ali N, et al. Infant birth weight estimation and low birth weight classification in United Arab Emirates using machine learning algorithms. Sci Rep. 2022; 12(1):12110.
https://doi.org/10.1038/s41598-022-14393-6
.
21. Zahirzada A, Lavangnananda K. Implementing predictive model for low birth weight in Afghanistan. In : Proceedings of 2021, 13th International Conference on Knowledge and Smart Technology (KST); 2021 Jan 21–24; Bangsaen, Thailand. p. 67–72.
https://doi.org/10.1109/KST51265.2021.9415792
.
22. Borson NS, Kabir MR, Zamal Z, Rahman RM. Correlation analysis of demographic factors on low birth weight and prediction modeling using machine learning techniques. In : Proceedings of 2020, 4th World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4); 2020 Jul 27–28; London, UK. p. 169–73.
https://doi.org/10.1109/WorldS450073.2020.9210338
.
23. Senthilkumar D, Paulraj S. Prediction of low birth weight infants and its risk factors using data mining techniques. In : Proceedings of the 2015 International Conference on Industrial Engineering and Operations Management; 2015 Mar 3–5; Dubai, UAE. p. 186–94.
25. Ghelichkhani S, Masoumi SZ, Shirzadeh AA, Khazaei S, Shahbazi F. Evaluation of maternal risk factors for preterm delivery in Fatemieh Hospital of Hamadan, Iran, 2019: a case-control study. J Family Med Prim Care. 2021; 10(10):3832–7.
https://doi.org/10.4103/jfmpc.jfmpc_1032_21
.
26. Cogendez E, Dolgun ZN, Sanverdi I, Turgut A, Eren S. Post-abortion hysteroscopy: a method for early diagnosis of congenital and acquired intrauterine causes of abortions. Eur J Obstet Gynecol Reprod Biol. 2011; 156(1):101–4.
https://doi.org/10.1016/j.ejogrb.2010.12.025
.
27. Poorolajal J, Ameri P, Soltanian A, Bahrami M. Effect of consanguinity on low birth weight: a meta-analysis. Arch Iran Med. 2017; 20(3):178–84.
28. Bennett RL, Motulsky AG, Bittles A, Hudgins L, Uhrich S, Doyle DL, et al. Genetic counseling and screening of consanguineous couples and their offspring: recommendations of the National Society of Genetic Counselors. J Genet Couns. 2002; 11(2):97–119.
https://doi.org/10.1023/A:1014593404915
.
29. Friede A, Baldwin W, Rhodes PH, Buehler JW, Strauss LT, Smith JC, et al. Young maternal age and infant mortality: the role of low birth weight. Public Health Rep. 1987; 102(2):192–9.
30. Kebede A, Kebede A, Belina S, Biratu Y. Trends and determinants of small birth weight in Ethiopia: further analysis of Ethiopian Demographic and Health Surveys. Ethiop J Health Sci. 2021; 31(2):299–310.
https://doi.org/10.4314/ejhs.v31i2.13
.