J Dent Rehabil Appl Sci.  2022 Dec;38(4):196-203. 10.14368/jdras.2022.38.4.196.

Deep learning algorithms for identifying 79 dental implant types

Affiliations
  • 1Department of Prosthodontics, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
  • 2HERIBio Co. Ltd., Seoul, Republic of Korea
  • 3Korea Platform Service Technology Co. Ltd., Daejeon, Republic of Korea

Abstract

Purpose
This study aimed to evaluate the accuracy and clinical usability of an identification model using deep learning for 79 dental implant types.
Materials and Methods
A total of 45396 implant fixture images were collected through panoramic radiographs of patients who received implant treatment from 2001 to 2020 at 30 dental clinics. The collected implant images were 79 types from 18 manufacturers. EfficientNet and Meta Pseudo Labels algorithms were used. For EfficientNet, EfficientNet-B0 and EfficientNet-B4 were used as submodels. For Meta Pseudo Labels, two models were applied according to the widen factor. Top 1 accuracy was measured for EfficientNet and top 1 and top 5 accuracy for Meta Pseudo Labels were measured.
Results
EfficientNet-B0 and EfficientNet-B4 showed top 1 accuracy of 89.4. Meta Pseudo Labels 1 showed top 1 accuracy of 87.96, and Meta pseudo labels 2 with increased widen factor showed 88.35. In Top5 Accuracy, the score of Meta Pseudo Labels 1 was 97.90, which was 0.11% higher than 97.79 of Meta Pseudo Labels 2.
Conclusion
All four deep learning algorithms used for implant identification in this study showed close to 90% accuracy. In order to increase the clinical applicability of deep learning for implant identification, it will be necessary to collect a wider amount of data and develop a fine-tuned algorithm for implant identification.

Keyword

dental implants; artificial intelligence; deep learning; convolutional neural networks

Figure

  • Fig. 1 Accuracy and train loss results for EfficientNet-B0 and EfficientNet-B4 algorithms. The value of validation means top 1 accuracy.

  • Fig. 2 Top 1 and Top 5 accuracy and train loss results of Meta Pseudo Labels algorithms. Meta Pseudo Labels 2 is a setting with an increased widen factor.


Reference

References

1. Hämmerle CH, Glauser R. 2004; Clinical evaluation of dental implant treatment. Periodontol 2000. 34:230–9. DOI: 10.1046/j.0906-6713.2003.003434.x. PMID: 14717865. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=1542402165&origin=inward.
Article
2. Romeo E, Lops D, Margutti E, Ghisolfi M, Chiapasco M, Vogel G. 2004; Long-term survival and success of oral implants in the treatment of full and partial arches: a 7-year prospective study with the ITI dental implant system. Int J Oral Maxillofac Implants. 19:247–59. PMID: 15101597. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=2342431804&origin=inward.
3. Grossmann Y, Nissan J, Levin L. 2009; Clinical effectiveness of implant-supported removable partial dentures: a review of the literature and retrospective case evaluation. J Oral Maxillofac Surg. 67:1941–6. DOI: 10.1016/j.joms.2009.04.081. PMID: 19686933. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=68749102397&origin=inward.
4. Simonis P, Dufour T, Tenenbaum H. 2010; Long-term implant survival and success: a 10-16-year follow-up of non-submerged dental implants. Clin Oral Implants Res. 21:772–7. DOI: 10.1111/j.1600-0501.2010.01912.x. PMID: 20636731. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77954616080&origin=inward.
Article
5. Hadj Saïd M, Le Roux MK, Catherine JH, Lan R. 2020; Development of an artificial intelligence model to identify a dental implant from a radiograph. Int J Oral Maxillofac Implants. 36:1077–82. DOI: 10.11607/jomi.8060. PMID: 33270045. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85097120934&origin=inward.
Article
6. Misch K, Wang HL. 2008; Implant surgery complications: etiology and treatment. Implant Dent. 17:159–68. DOI: 10.1097/ID.0b013e3181752f61. PMID: 18545047. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=50949086798&origin=inward.
Article
7. Annibali S, Ripari M, LA Monaca G, Tonoli F, Cristalli MP. 2008; Local complications in dental implant surgery: prevention and treatment. Oral Implantol. 1:21–33. PMID: 23285333. PMCID: PMC3476500.
8. Nedir R, Bischof M, Szmukler-Moncler S, Belser UC, Samson J. 2006; Prosthetic complications with dental implants: from an up-to-8-year experience in private practice. Int J Oral Maxillofac Implants. 21:919–28. PMID: 17190302. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33748363075&origin=inward.
9. Sahiwal IG, Woody RD, Benson BW, Guillen GE. 2002; Radiographic identification of nonthreaded endosseous dental implants. J Prosthet Dent. 87:552–62. DOI: 10.1067/mpr.2002.124431. PMID: 12070519. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0036561659&origin=inward.
10. Sewerin I. 1992; Identification of dental implants on radiographs. Quintessence Int. 23:611–8. PMID: 1287712. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0026920620&origin=inward.
11. Chan HP, Samala RK, Hadjiiski LM, Zhou C. 2020; Deep learning in medical image analysis. Adv Exp Med Biol. 1213:3–21. DOI: 10.1007/978-3-030-33128-3_1. PMID: 32030660. PMCID: PMC7442218. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85079081079&origin=inward.
Article
12. Hwang JJ, Jung YH, Cho BH, Heo MS. 2019; An overview of deep learning in the field of dentistry. Imaging Sci Dent. 49:1–7. DOI: 10.5624/isd.2019.49.1.1. PMID: 30941282. PMCID: PMC6444007. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85065124911&origin=inward.
Article
13. Lee JH, Kim YT, Lee JB, Jeong SN. 2020; A performance comparison between automated deep learning and dental professionals in classification of dental implant systems from dental imaging: a multi-center study. Diagnostics. 10:910. DOI: 10.3390/diagnostics10110910. PMID: 33171758. PMCID: PMC7694989. PMID: 6b6b369966a945058a6b2fd1b01278df. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85106410473&origin=inward.
Article
14. Takahashi T, Nozaki K, Gonda T, Mameno T, Wada M, Ikebe K. 2020; Identification of dental implants using deep learning-pilot study. Int J Implant Dent. 6:53. DOI: 10.1186/s40729-020-00250-6. PMID: 32959154. PMCID: PMC7505912. PMID: 6f5754f801aa47dc83ad2947fbc03011.
Article
15. Sukegawa S, Yoshii K, Hara T, Yamashita K, Nakano K, Yamamoto N, Nagatsuka H, Furuki Y. 2020; Deep neural networks for dental implant system classification. Biomolecules. 10:984. DOI: 10.3390/biom10070984. PMID: 32630195. PMCID: PMC7407934. PMID: c17a561a9e424951a6cd1b4254138aed. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85087385076&origin=inward.
Article
16. Kim JE, Nam NE, Shim JS, Jung YH, Cho BH, Hwang JJ. 2020; Transfer learning via deep neural networks for implant fixture system classification using periapical radiographs. J Clin Med. 9:1117. DOI: 10.3390/jcm9041117. PMID: 32295304. PMCID: PMC7230319. PMID: 7310646b9c69425ea1064de40afe19c9. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85086727912&origin=inward.
Article
17. Tan M, Le QV. 2019; Efficientnet: rethinking model scaling for convolutional neural networks. Proc Mach Learn Res. 97:6105–14. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0026920620&origin=inward.
18. Michelinakis G, Sharrock A, Barclay CW. 2006; Identification of dental implants through the use of Implant Recognition Software (IRS). Int Dent J. 56:203–8. DOI: 10.1111/j.1875-595X.2006.tb00095.x. PMID: 16972394. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33748373581&origin=inward.
Article
19. Zheng Q, Yang M, Tian X, Jiang N, Wang D. 2020; A full stage data augmentation method in deep convolutional neural network for natural image classification. Discrete Dyn Nat Soc. 1:1–11. DOI: 10.1155/2020/4706576. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85078185391&origin=inward.
Article
20. Truhlar RS, Morris HF, Ochi S. 1993; A review of panoramic radiography and its potential use in implant dentistry. Implant Dent. 2:122–30. DOI: 10.1097/00008505-199305000-00010. PMID: 8242015. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0027621050&origin=inward.
Article
21. Kayal RA. 2016; Distortion of digital panoramic radiographs used for implant site assessment. J Orthod Sci. 5:117–20. DOI: 10.4103/2278-0203.192113. PMID: 27843885. PMCID: PMC5084472. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85054704369&origin=inward.
Article
Full Text Links
  • JDRAS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr