1. Amyot F, Arciniegas DB, Brazaitis MP, Curley KC, Diaz-Arrastia R, Gandjbakhche A, et al. A review of the effectiveness of neuroimaging modalities for the detection of traumatic brain injury. J Neurotrauma. 32:1693–1721. 2015.
2. Beyaz S, Açıcı K, Sümer E. Femoral neck fracture detection in X-ray images using deep learning and genetic algorithm approaches. Jt Dis Relat Surg. 31:175–183. 2020.
3. Bruns JJ Jr, Jagoda AS. Mild traumatic brain injury. Mt Sinai J Med. 76:129–137. 2009.
4. Chung SW, Han SS, Lee JW, Oh KS, Kim NR, Yoon JP, et al. Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta orthop. 89:468–473. 2018.
5. Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A. The pascal visual object classes (voc) challenge. Int J Comput Vis. 88:303–338. 2010.
6. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition : Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: The Institute of Electrical and Electronics Engineers, Inc.;2016. p. 770–778.
7. Kim HJ, Roh HG, Lee IW. Craniosynostosis : updates in radiologic diagnosis. J Korean Neurosurg Soc. 59:219–226. 2016.
8. Krogue JD, Cheng KV, Hwang KM, Toogood P, Meinberg EG, Geiger EJ, et al. Automatic hip fracture identification and functional subclassification with deep learning. Radiol Artif Intell. 2:e190023. 2020.
9. Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 284:574–582. 2017.
10. Le TH, Gean AD. Neuroimaging of traumatic brain injury. Mt Sinai J Med. 76:145–162. 2009.
11. Lin TY, Goyal P, Girshick R, He K, Dollar P. Focal loss for dense object detection : Proceedings of the IEEE International Conference on Computer Vision. Piscataway: The Institute of Electrical and Electronics Engineers, Inc;2017. p. 2980–2988.
12. Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, et al. Microsoft coco: common objects in context : European Conference on Computer Vision. Cham: Springer;2014. p. 740–755.
13. Möller TB, Reif E. Pocket Atlas of Radiographic Positioning: Including Positioning for Conventional Angiography, CT, and MRI. Noida: Thieme;2008.
14. Nakahara K, Utsuki S, Shimizu S, Iida H, Miyasaka Y, Takagi H, et al. Age dependence of fusion of primary occipital sutures: a radiographic study. Childs Nerv Syst. 22:1457–1459. 2006.
15. Ozkaya E, Topal FE, Bulut T, Gursoy M, Ozuysal M, Karakaya Z. Evaluation of an artificial intelligence system for diagnosing scaphoid fracture on direct radiography. Eur J Trauma Emerg Surg. 48:585–592. 2020.
16. Rezatofighi H, Tsoi N, Gwak J, Sadeghian A, Reid I, Savarese S. Generalized intersection over union: a metric and a loss for bounding box regression : Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: The Institute of Electrical and Electronics Engineers, Inc.;2019. p. 658–666.
17. Sanchez T, Stewart D, Walvick M, Swischuk L. Skull fracture vs. accessory sutures: how can we tell the difference? Emerg Radiol. 17:413–418. 2010.
18. Sim SY, Yoon SH, Kim SY. Quantitative analysis of developmental process of cranial suture in Korean infants. J Korean Neurosurg Soc. 51:31–36. 2012.
19. Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths - united states, 2007 and 2013. MMWR Surveill Summ. 66:1–16. 2017.
20. Weir P, Suttner NJ, Flynn P, McAuley D. Normal skull suture variant mimicking intentional injury. BMJ. 332:1020–1021. 2006.
21. Wintermark M, Sanelli PC, Anzai Y, Tsiouris AJ, Whitlow CT; ACR Head Injury Institute, et al. Imaging evidence and recommendations for traumatic brain injury: conventional neuroimaging techniques. J Am Coll Radiol. 12:e1–e14. 2015.