Cardiovasc Prev Pharmacother.  2019 Jul;1(1):10-18. 10.36011/cpp.2019.1.e3.

Challenges and Future in Precision Cardiovascular Medicine

Affiliations
  • 1Division of Cardiovascular Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Korea

Abstract

Cardiovascular disease (CVD) still remains the global leading cause of mortality and also impose major burdens on morbidity, quality of life, and societal costs despite of the remarkable progress of cardiovascular (CV) treatment over the past 50 years. CVD therapy improves CV outcomes in less than half of patients. Precision medicine is an attractive and advancing strategy to enhance for disease prevention, diagnosis, and tailored treatment and allocate limited resources more wisely and effectively. We are now in the middle of fourth industrial revolution by a robust confluence of biotechnology, physical science and information technologies. This approach is in its premature so far, but has begun to yield useful information that moves from the conventional ‘average response’ approach to more specific and targeted approaches governed by individual variability. This review aims to how precision medicine, genomics, and epigenetics work together to create a new era of CV precision medicine.

Keyword

Precision medicine; Genomics; Epigenetics

Cited by  1 articles

Welcome to the New Journal Cardiovascular Prevention and Pharmacotherapy
Mi-Jeong Kim, Jang-Whan Bae, Dae Ryong Kang
Cardiovasc Prev Pharmacother. 2019;1(1):1-2.    doi: 10.36011/cpp.2019.1.e5.


Reference

1. Precision Medicine Initiative (PMI) Working Group. The Precision Medicine Initiative cohort program— building a research foundation for 21st century medicine [Internet]. Bethesda, MD: PMI Working Group;2015. Available from https://www.nih.gov/sites/default/files/research-training/initiatives/pmi/pmiworking-group-report-20150917-2.pdf.
2. Antman EM, Loscalzo J. Precision medicine in cardiology. Nat Rev Cardiol. 2016; 13:591–602.
Article
3. Leopold JA, Loscalzo J. Emerging role of precision medicine in cardiovascular disease. Circ Res. 2018; 122:1302–15.
Article
4. Califf RM. Future of personalized cardiovascular medicine: JACC state-of-the-art review. J Am Coll Cardiol. 2018; 72:3301–9.
5. Mirnezami R, Nicholson J, Darzi A. Preparing for precision medicine. N Engl J Med. 2012; 366:489–91.
Article
6. Fuster V. A first dilemma in cardiovascular medicine: adherence versus personalized therapy. J Am Coll Cardiol. 2014; 64:1059–60.
7. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chiuve SE, Cushman M, Delling FN, Deo R, de Ferranti SD, Ferguson JF, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Lutsey PL, Mackey JS, Matchar DB, Matsushita K, Mussolino ME, Nasir K, O'Flaherty M, Palaniappan LP, Pandey A, Pandey DK, Reeves MJ, Ritchey MD, Rodriguez CJ, Roth GA, Rosamond WD, Sampson UK, Satou GM, Shah SH, Spartano NL, Tirschwell DL, Tsao CW, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation. 2018; 137:e67–492.
Article
8. Ford ES, Ajani UA, Croft JB, Critchley JA, Labarthe DR, Kottke TE, Giles WH, Capewell S. Explaining the decrease in U.S. deaths from coronary disease, 1980-2000. N Engl J Med. 2007; 356:2388–98.
Article
9. Luepker RV. Falling coronary heart disease rates: a better explanation? Circulation. 2016; 133:8–11.
10. Ginsburg GS, Phillips KA. Precision medicine: from science to value. Health Aff (Millwood). 2018; 37:694–701.
Article
11. Lau E, Wu JC. Omics, big data, and precision medicine in cardiovascular sciences. Circ Res. 2018; 122:1165–8.
Article
12. Loscalzo J. Precision medicine. Circ Res. 2019; 124:987–9.
Article
13. Food and Drug Administration (FDA). Enrichment strategies for clinical trials to support determination of effectiveness of human drugs and biological products guidance for industry [Internet]. Silver Spring, MD: FDA;2019. March. Available from https://www.fda.gov/media/121320/download.
14. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR; PARADIGM-HF Investigators and Committees. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014; 371:993–1004.
Article
15. Raal FJ, Stein EA, Dufour R, Turner T, Civeira F, Burgess L, Langslet G, Scott R, Olsson AG, Sullivan D, Hovingh GK, Cariou B, Gouni-Berthold I, Somaratne R, Bridges I, Scott R, Wasserman SM, Gaudet D; RUTHERFORD-2 Investigators. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet. 2015; 385:331–40.
Article
16. Mulatero P, Verhovez A, Morello F, Veglio F. Diagnosis and treatment of low-renin hypertension. Clin Endocrinol (Oxf ). 2007; 67:324–34.
Article
17. Mega JL, Hochholzer W, Frelinger AL 3rd, Kluk MJ, Angiolillo DJ, Kereiakes DJ, Isserman S, Rogers WJ, Ruff CT, Contant C, Pencina MJ, Scirica BM, Longtine JA, Michelson AD, Sabatine MS. Dosing clopidogrel based on CYP2C19 genotype and the effect on platelet reactivity in patients with stable cardiovascular disease. JAMA. 2011; 306:2221–8.
Article
18. Packer M, Gheorghiade M, Young JB, Costantini PJ, Adams KF, Cody RJ, Smith LK, Van Voorhees L, Gourley LA, Jolly MK. Withdrawal of digoxin from patients with chronic heart failure treated with angiotensin-converting-enzyme inhibitors. RADIANCE Study. N Engl J Med. 1993; 329:1–7.
Article
19. Moriarty PM, Jacobson TA, Bruckert E, Thompson PD, Guyton JR, Baccara-Dinet MT, Gipe D. Efficacy and safety of alirocumab, a monoclonal antibody to PCSK9, in statin-intolerant patients: design and rationale of ODYSSEY ALTERNATIVE, a randomized phase 3 trial. J Clin Lipidol. 2014; 8:554–61.
Article
20. Dainis AM, Ashley EA. Cardiovascular precision medicine in the genomics era. JACC Basic Transl Sci. 2018; 3:313–26.
Article
21. Manolio TA, Abramowicz M, Al-Mulla F, Anderson W, Balling R, Berger AC, Bleyl S, Chakravarti A, Chantratita W, Chisholm RL, Dissanayake VH, Dunn M, Dzau VJ, Han BG, Hubbard T, Kolbe A, Korf B, Kubo M, Lasko P, Leego E, Mahasirimongkol S, Majumdar PP, Matthijs G, McLeod HL, Metspalu A, Meulien P, Miyano S, Naparstek Y, O'Rourke PP, Patrinos GP, Rehm HL, Relling MV, Rennert G, Rodriguez LL, Roden DM, Shuldiner AR, Sinha S, Tan P, Ulfendahl M, Ward R, Williams MS, Wong JE, Green ED, Ginsburg GS. Global implementation of genomic medicine: we are not alone. Sci Transl Med. 2015; 7:290. ps13.
Article
22. Giudicessi JR, Ackerman MJ. Genotype- and phenotype-guided management of congenital long QT syndrome. Curr Probl Cardiol. 2013; 38:417–55.
Article
23. Mazzanti A, Maragna R, Faragli A, Monteforte N, Bloise R, Memmi M, Novelli V, Baiardi P, Bagnardi V, Etheridge SP, Napolitano C, Priori SG. Gene-specific therapy with mexiletine reduces arrhythmic events in patients with long QT syndrome type 3. J Am Coll Cardiol. 2016; 67:1053–8.
Article
24. Abu-Zeitone A, Peterson DR, Polonsky B, McNitt S, Moss AJ. Efficacy of different beta-blockers in the treatment of long QT syndrome. J Am Coll Cardiol. 2014; 64:1352–8.
Article
25. Khera AV, Chaffin M, Aragam KG. Genome-wide polygenic score to identify a monogenic risk-equivalent for coronary disease. bioRxivorg 2017 Nov 15 [E-pub ahead of print]. https://doi.org/10.1101/218388.
Article
26. Torpy JM, Burke AE, Glass RM. JAMA patient page. Coronary heart disease risk factors. JAMA. 2009; 302:2388.
27. Kullo IJ, Jouni H, Austin EE, Brown SA, Kruisselbrink TM, Isseh IN, Haddad RA, Marroush TS, Shameer K, Olson JE, Broeckel U, Green RC, Schaid DJ, Montori VM, Bailey KR. Incorporating a genetic risk score into coronary heart disease risk estimates: effect on low-density lipoprotein cholesterol levels (the MIGENES clinical trial). Circulation. 2016; 133:1181–8.
Article
28. Schmidt AF, Pearce LS, Wilkins JT, Overington JP, Hingorani AD, Casas JP. PCSK9 monoclonal antibodies for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2017; 4:CD011748.
Article
29. Fitzgerald K, White S, Borodovsky A, Bettencourt BR, Strahs A, Clausen V, Wijngaard P, Horton JD, Taubel J, Brooks A, Fernando C, Kauffman RS, Kallend D, Vaishnaw A, Simon A. A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med. 2017; 376:41–51.
Article
30. Ding Q, Strong A, Patel KM, Ng SL, Gosis BS, Regan SN, Cowan CA, Rader DJ, Musunuru K. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. 2014; 115:488–92.
Article
31. Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, Koski A, Ji D, Hayama T, Ahmed R, Darby H, Van Dyken C, Li Y, Kang E, Park AR, Kim D, Kim ST, Gong J, Gu Y, Xu X, Battaglia D, Krieg SA, Lee DM, Wu DH, Wolf DP, Heitner SB, Belmonte JC, Amato P, Kim JS, Kaul S, Mitalipov S. Correction of a pathogenic gene mutation in human embryos. Nature. 2017; 548:413–9.
Article
32. Weinshilboum RM, Wang L. Pharmacogenomics: precision medicine and drug response. Mayo Clin Proc. 2017; 92:1711–22.
Article
33. Food and Drug Administration (FDA).Table of pharmacogenomic biomarkers in drug labeling [Internet]. Silver Spring, MD: FDA; 2019 March. Available from https://www.fda.gov/Drugs/ScienceResearch/ucm572698.htm.
34. Xie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO, Kan YW. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 2014; 24:1526–33.
35. Harper AR, Parikh VN, Goldfeder RL, Caleshu C, Ashley EA. Delivering clinical grade sequencing and genetic test interpretation for cardiovascular medicine. Circ Cardiovasc Genet. 2017; 10:e001221.
Article
36. Walsh R, Thomson KL, Ware JS, Funke BH, Woodley J, McGuire KJ, Mazzarotto F, Blair E, Seller A, Taylor JC, Minikel EV; Exome Aggregation Consortium, MacArthur DG, Farrall M, Cook SA, Watkins H. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet Med. 2017; 19:192–203.
Article
37. Sturm AC, Hershberger RE. Genetic testing in cardiovascular medicine: current landscape and future horizons. Curr Opin Cardiol. 2013; 28:317–25.
38. Caleshu C, Ashley E. Genetic testing for cardiovascular conditions predisposing to sudden death. In : Wilson MG, Drezner JA, Sharma S, editors. IOC Manual of Sports Cardiology. Hoboken, NJ: Wiley & Sons, Ltd;2016. p. 175–86.
39. Benson MD, Dasgupta NR, Rissing SM, Smith J, Feigenbaum H. Safety and efficacy of a TTR specific antisense oligonucleotide in patients with transthyretin amyloid cardiomyopathy. Amyloid. 2017; 24:219–25.
Article
40. Parikh VN, Ashley EA. Next-generation sequencing in cardiovascular disease: present clinical applications and the horizon of precision medicine. Circulation. 2017; 135:406–9.
Article
41. Liggett SB, Mialet-Perez J, Thaneemit-Chen S, Weber SA, Greene SM, Hodne D, Nelson B, Morrison J, Domanski MJ, Wagoner LE, Abraham WT, Anderson JL, Carlquist JF, Krause-Steinrauf HJ, Lazzeroni LC, Port JD, Lavori PW, Bristow MR. A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proc Natl Acad Sci U S A. 2006; 103:11288–93.
42. White HL, de Boer RA, Maqbool A, Greenwood D, van Veldhuisen DJ, Cuthbert R, Ball SG, Hall AS, Balmforth AJ; MERIT-HF Study Group. An evaluation of the beta-1 adrenergic receptor Arg389Gly polymorphism in individuals with heart failure: a MERIT-HF sub-study. Eur J Heart Fail. 2003; 5:463–8.
Article
43. Lee HY, Chung WJ, Jeon HK, Seo HS, Choi DJ, Jeon ES, Kim JJ, Shin JH, Kang SM, Lim SC, Baek SH. Impact of the β-1 adrenergic receptor polymorphism on tolerability and efficacy of bisoprolol therapy in Korean heart failure patients: association between β adrenergic receptor polymorphism and bisoprolol therapy in heart failure (ABBA) study. Korean J Intern Med. 2016; 31:277–87.
Article
44. González-Recio O, Toro MA, Bach A. Past, present, and future of epigenetics applied to livestock breeding. Front Genet. 2015; 6:305.
45. DeLaughter DM, Bick AG, Wakimoto H, McKean D, Gorham JM, Kathiriya IS, Hinson JT, Homsy J, Gray J, Pu W, Bruneau BG, Seidman JG, Seidman CE. Single-cell resolution of temporal gene expression during heart development. Dev Cell. 2016; 39:480–90.
Article
46. Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011; 123:2145–56.
47. Costantino S, Libby P, Kishore R, Tardif JC, El-Osta A, Paneni F. Epigenetics and precision medicine in cardiovascular patients: from basic concepts to the clinical arena. Eur Heart J. 2018; 39:4150–8.
Article
48. Kohane IS. Health care policy. Ten things we have to do to achieve precision medicine. Science. 2015; 349:37–8.
Article
49. Joyner MJ. Precision medicine, cardiovascular disease and hunting elephants. Prog Cardiovasc Dis. 2016; 58:651–60.
Article
50. Fuster V. A second dilemma in cardiovascular medicine: personalized medicine versus personal interaction with the patient. J Am Coll Cardiol. 2014; 64:1292–3.
Full Text Links
  • CPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr