1. LaValley MP. Logistic regression. Circulation. 2008; 117:2395–9.
Article
2. Hosmer DW, Lemeshow S. Applied Logistic Regression. 2nd ed. New York, NY: John Wiley & Sons, Inc;2000.
3. Kirkwood BR, Sterne JA. Essential Medical Statistics. Oxford: Blackwell Science Ltd;2003.
4. Park HA. An introduction to logistic regression: from basic concepts to interpretation with particular attention to nursing domain. J Korean Acad Nurs. 2013; 43:154–64.
Article
5. Peng CJ, Lee KL, Ingersoll GM. An introduction to logistic regression analysis and reporting. J Educ Res. 2002; 96:3–14.
Article
6. Schmidt CO, Kohlmann T. When to use the odds ratio or the relative risk? Int J Public Health. 2008; 53:165–7.
Article
7. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996; 49:1373–9.
Article
8. Mansournia MA, Geroldinger A, Greenland S, Heinze G. Separation in logistic regression: causes, consequence, and control. Am J Epidemiol. 2018; 187:864–70.
9. Agresti A. Categorical Data Analysis. 3rd ed. Hoboken, NJ: John Wiley & Sons;2013.
10. Firth D. Bias reduction of maximum likelihood estimates. Biometrika. 1993; 80:27–38.
Article
11. Gelman A, Jakulin A, Pittau MG, Su YS. A weakly informative default prior distribution for logistic and other regression models. Ann Appl Stat. 2008; 2:1360–83.
Article
12. Greenland S, Mansournia MA. Penalization, bias reduction, and default priors in logistic and related categorical and survival regressions. Stat Med. 2015; 34:3133–43.
Article
13. Le Cessie S, Van Houwelingen J. Ridge estimators in logistic regression. J R Stat Soc Ser C Appl Stat. 1992; 41:191–201.
Article
14. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Series B Stat Methodol. 1996; 58:267–88.
Article
15. Bender R, Grouven U. Ordinal logistic regression in medical research. J R Coll Physicians Lond. 1997; 31:546–51.
16. Harrell FE Jr, Margolis PA, Gove S, Mason KE, Mulholland EK, Lehmann D, Muhe L, Gatchalian S, Eichenwald HF; WHO/ARI Young Infant Multicentre Study Group. Development of a clinical prediction model for an ordinal outcome: the World Health Organization Multicentre Study of Clinical Signs and Etiological agents of Pneumonia, Sepsis and Meningitis in Young Infants. Stat Med. 1998; 17:909–44.
Article
17. Scott SC, Goldberg MS, Mayo NE. Statistical assessment of ordinal outcomes in comparative studies. J Clin Epidemiol. 1997; 50:45–55.
Article
18. Cannon MJ, Warner L, Taddei JA, Kleinbaum DG. What can go wrong when you assume that correlated data are independent: an illustration from the evaluation of a childhood data are independent: an illustration from the evaluation of a childhood health intervention in Brazil. Stat Med. 2001; 20:1461–7.
19. Lipsitz SR, Kim K, Zhao L. Analysis of repeated categorical data using generalized estimating equations. Stat Med. 1994; 13:1149–63.
Article
20. Twisk JW. Applied Longitudinal Data Analysis for Epidemiology. Cambridge: Cambridge University Press;2003.