Int J Thyroidol.  2022 Nov;15(2):61-67. 10.11106/ijt.2022.15.2.61.

Near Infrared Autofluoroscence (NIRAF) in Thyroid Surgery

Affiliations
  • 1Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine, Busan, Korea

Abstract

The preservation of the parathyroid gland during thyroid surgery is still challenging; Intraoperative detection of parathyroid glands using near-infrared autofluorescence (NIRAF) has been recently introduced as a solution. NIRAF is noninvasive and it can be applied without contrast dye. Recently, increasing number of studies using NIRAF to detect parathyroid glands under normal or hyperparathyroidism state have been reported, and commercialized products of the imaging devices or probe systems have been produced. NIRAF imaging is also useful to find unrevealed parathyroid gland tissues before exposure, and early localization reduces unintended removal or blood vessel damage of parathyroid glands. It has been reported that this technique significantly decreases the incidence of early postoperative hypocalcemia.

Keyword

Parathyroid glands; Fluorescence; Near-infrared autofluorescence

Figure

  • Fig. 1 Emission of 822 nm autofluorescence from the fluorophore of the parathyroid gland (arrow) by excitation with 785 nm NIR light.

  • Fig. 2 Fluorescence spectra measured from parathyroid, thyroid fat, muscle and trachea. Near infrared (NIR) light can discriminate the parathyroid gland from surrounding tissues.

  • Fig. 3 Author’s laboratory-built NIRAF imaging system to identify parathyroid glands. When NIR light (785 nm) is illuminated to the surgical field (short arrow), the 822 nm of NIRAF is emitted from the fluorophore of parathyroid gland (long arrow) and then the camera detects the NIRAF. No need to use any exogenous contrast dye during the procedure (NIRAF, near-infrared autofluorescence).

  • Fig. 4 Left thyroid lobe is mobilized and inferior parathyroid gland is exposed (A). The NIRAF image shows the glowing of the parathyroid gland (B). Surrounding tissues have no significant autofluorescence intensity.

  • Fig. 5 Parathyroid gland mapping. In the white light image (A), no parathyroid glands can be seen with naked eye. Interestingly, with author’s lab-built NIRAF imager, the unexposed right inferior parathyroid gland can be clearly localized by mapping (B).


Reference

References

1. Duclos A, Peix JL, Colin C, Kraimps JL, Menegaux F, Pattou F, et al. 2012; Influence of experience on performance of individual surgeons in thyroid surgery: prospective cross sectional multicentre study. BMJ. 344:d8041. DOI: 10.1136/bmj.d8041. PMID: 22236412. PMCID: PMC3256252.
Article
2. Edafe O, Antakia R, Laskar N, Uttley L, Balasubramanian SP. 2014; Systematic review and meta-analysis of predictors of post-thyroidectomy hypocalcaemia. Br J Surg. 101(4):307–20. DOI: 10.1002/bjs.9384. PMID: 24402815.
Article
3. Tang JA, Salapatas AM, Bonzelaar LB, Friedman M. 2018; Parathyroidectomy for the treatment of hyperparathyroidism: thirty-day morbidity and mortality. Laryngoscope. 128(2):528–33. DOI: 10.1002/lary.26604. PMID: 28493416.
Article
4. Annebäck M, Hedberg J, Almquist M, Stålberg P, Norlén O. 2021; Risk of permanent hypoparathyroidism after total thyroidectomy for benign disease: a nationwide population-based cohort study from Sweden. Ann Surg. 274(6):e1202–e8. DOI: 10.1097/SLA.0000000000003800. PMID: 32032086.
5. Almquist M, Ivarsson K, Nordenstrom E, Bergenfelz A. 2018; Mortality in patients with permanent hypoparathyroidism after total thyroidectomy. Br J Surg. 105(10):1313–8. DOI: 10.1002/bjs.10843. PMID: 29663312.
Article
6. Shaha AR, Jaffe BM. 1998; Parathyroid preservation during thyroid surgery. Am J Otolaryngol. 19(2):113–7. DOI: 10.1016/S0196-0709(98)90106-5. PMID: 9550443.
Article
7. Park J-W. 2014; Preservation of parathyroid glands during thyroid surgery. Clin Exp Thyroidol. 7(2):149–52. DOI: 10.11106/cet.2014.7.2.149.
Article
8. McWade MA, Paras C, White LM, Phay JE, Mahadevan-Jansen A, Broome JT. 2013; A novel optical approach to intraoperative detection of parathyroid glands. Surgery. 154(6):1371–7. discussion 7DOI: 10.1016/j.surg.2013.06.046. PMID: 24238054. PMCID: PMC3898879.
Article
9. Patel HP, Chadwick DR, Harrison BJ, Balasubramanian SP. 2012; Systematic review of intravenous methylene blue in parathyroid surgery. Br J Surg. 99(10):1345–51. DOI: 10.1002/bjs.8814. PMID: 22961511.
Article
10. Tummers QR, Schepers A, Hamming JF, Kievit J, Frangioni JV, van de Velde CJ, et al. 2015; Intraoperative guidance in parathyroid surgery using near-infrared fluorescence imaging and low-dose Methylene Blue. Surgery. 158(5):1323–30. DOI: 10.1016/j.surg.2015.03.027. PMID: 25958068. PMCID: PMC4603995.
Article
11. Prosst RL, Gahlen J, Schnuelle P, Post S, Willeke F. 2006; Fluorescence-guided minimally invasive parathyroidectomy: a novel surgical therapy for secondary hyperparathyroidism. Am J Kidney Dis. 48(2):327–31. DOI: 10.1053/j.ajkd.2006.05.002. PMID: 16860201.
Article
12. Grubbs EG, Mittendorf EA, Perrier ND, Lee JE. 2008; Gamma probe identification of normal parathyroid glands during central neck surgery can facilitate parathyroid preservation. Am J Surg. 196(6):931–5. discussion 5–6. DOI: 10.1016/j.amjsurg.2008.07.026. PMID: 19095112.
Article
13. Sommerey S, Al Arabi N, Ladurner R, Chiapponi C, Stepp H, Hallfeldt KK, et al. 2015; Intraoperative optical coherence tomography imaging to identify parathyroid glands. Surg Endosc. 29(9):2698–704. DOI: 10.1007/s00464-014-3992-x. PMID: 25475518.
Article
14. Das K, Stone N, Kendall C, Fowler C, Christie-Brown J. 2006; Raman spectroscopy of parathyroid tissue pathology. Lasers Med Sci. 21(4):192–7. DOI: 10.1007/s10103-006-0397-7. PMID: 17024320.
Article
15. Kim IA, Taylor ZD, Cheng H, Sebastian C, Maccabi A, Garritano J, et al. 2017; Dynamic optical contrast imaging. Otolaryngol Head Neck Surg. 156(3):480–3. DOI: 10.1177/0194599816686294. PMID: 28116982.
16. Paras C, Keller M, White L, Phay J, Mahadevan-Jansen A. 2011; Near-infrared autofluorescence for the detection of parathyroid glands. J Biomed Opt. 16(6):067012. DOI: 10.1117/1.3583571. PMID: 21721833.
Article
17. McWade MA, Paras C, White LM, Phay JE, Solorzano CC, Broome JT, et al. 2014; Label-free intraoperative parathyroid localization with near-infrared autofluorescence imaging. J Clin Endocrinol Metab. 99(12):4574–80. DOI: 10.1210/jc.2014-2503. PMID: 25148235. PMCID: PMC4255111.
Article
18. De Leeuw F, Breuskin I, Abbaci M, Casiraghi O, Mirghani H, Ben Lakhdar A, et al. 2016; Intraoperative near-infrared imaging for parathyroid gland identification by auto-fluorescence: a feasibility study. World J Surg. 40(9):2131–8. DOI: 10.1007/s00268-016-3571-5. PMID: 27220510.
Article
19. Ladurner R, Sommerey S, Arabi NA, Hallfeldt KKJ, Stepp H, Gallwas JKS. 2017; Intraoperative near-infrared autofluorescence imaging of parathyroid glands. Surg Endosc. 31(8):3140–5. DOI: 10.1007/s00464-016-5338-3. PMID: 27844237.
Article
20. McWade MA, Sanders ME, Broome JT, Solorzano CC, Mahadevan-Jansen A. 2016; Establishing the clinical utility of autofluorescence spectroscopy for parathyroid detection. Surgery. 159(1):193–202. DOI: 10.1016/j.surg.2015.06.047. PMID: 26454675. PMCID: PMC4836056.
Article
21. Dip F, Falco J, Verna S, Prunello M, Loccisano M, Quadri P, et al. 2019; Randomized controlled trial comparing white light with near-infrared autofluorescence for parathyroid gland identification during total thyroidectomy. J Am Coll Surg. 228(5):744–51. DOI: 10.1016/j.jamcollsurg.2018.12.044. PMID: 30710614.
Article
22. Kim SW, Lee HS, Ahn YC, Park CW, Jeon SW, Kim CH, et al. 2018; Near-infrared autofluorescence image-guided parathyroid gland mapping in thyroidectomy. J Am Coll Surg. 226(2):165–72. DOI: 10.1016/j.jamcollsurg.2017.10.015. PMID: 29122718.
Article
23. Kim SW, Song SH, Lee HS, Noh WJ, Oak C, Ahn YC, et al. 2016; Intraoperative real-time localization of normal parathyroid glands with autofluorescence imaging. J Clin Endocrinol Metab. 101(12):4646–52. DOI: 10.1210/jc.2016-2558. PMID: 27648967.
Article
24. Thomas G, McWade MA, Paras C, Mannoh EA, Sanders ME, White LM, et al. 2018; Developing a clinical prototype to guide surgeons for intraoperative label-free identification of parathyroid glands in real time. Thyroid. 28(11):1517–31. DOI: 10.1089/thy.2017.0716. PMID: 30084742. PMCID: PMC6247985.
Article
25. Thomas G, McWade MA, Nguyen JQ, Sanders ME, Broome JT, Baregamian N, et al. 2019; Innovative surgical guidance for label-free real-time parathyroid identification. Surgery. 165(1):114–23. DOI: 10.1016/j.surg.2018.04.079. PMID: 30442424. PMCID: PMC6380501.
Article
26. Thomas G, Squires MH, Metcalf T, Mahadevan-Jansen A, Phay JE. 2019; Imaging or fiber probe-based approach? Assessing different methods to detect near infrared autofluorescence for intraoperative parathyroid identification. J Am Coll Surg. 229(6):596–608 e3. DOI: 10.1016/j.jamcollsurg.2019.09.003. PMID: 31562910. PMCID: PMC7756928.
Article
27. Kahramangil B, Dip F, Benmiloud F, Falco J, de La Fuente M, Verna S, et al. 2018; Detection of parathyroid autofluorescence using near-infrared imaging: a multicenter analysis of concordance between different surgeons. Ann Surg Oncol. 25(4):957–62. DOI: 10.1245/s10434-018-6364-2. PMID: 29411199.
Article
28. Stolik S, Delgado JA, Perez A, Anasagasti L. Measurement of the penetration depths of red and near infrared light in human "ex vivo" tissues. J Photochem Photobiol B. 2000; 57(2-3):90–3. DOI: 10.1016/S1011-1344(00)00082-8. PMID: 11154088.
Article
29. Benmiloud F, Godiris-Petit G, Gras R, Gillot JC, Turrin N, Penaranda G, et al. 2020; Association of autofluorescence-based detection of the parathyroid glands during total thyroidectomy with postoperative hypocalcemia risk: results of the PARAFLUO multicenter randomized clinical trial. JAMA Surg. 155(2):106–12. DOI: 10.1001/jamasurg.2019.4613. PMID: 31693081. PMCID: PMC6865247.
Article
30. Kim DH, Kim SW, Kang P, Choi J, Lee HS, Park SY, et al. 2021; Near-infrared autofluorescence imaging may reduce temporary hypoparathyroidism in patients undergoing total thyroidectomy and central neck dissection. Thyroid. 31(9):1400–8. DOI: 10.1089/thy.2021.0056. PMID: 33906431.
Article
31. Solórzano CC, Thomas G, Baregamian N, Mahadevan-Jansen A. 2020; Detecting the near infrared autofluorescence of the human parathyroid: hype or opportunity? Ann Surg. 272(6):973–85. DOI: 10.1097/SLA.0000000000003700. PMID: 31804401. PMCID: PMC8670620.
32. Muraveika L, Kose E, Berber E. 2020; Near-infrared fluorescence in robotic thyroidectomy. Gland Surg. 9(Suppl 2):S147–S52. DOI: 10.21037/gs.2019.12.15. PMID: 32175255. PMCID: PMC7044086.
Article
33. Vidal Fortuny J, Karenovics W, Triponez F, Sadowski SM. 2016; Intra-operative indocyanine green angiography of the parathyroid gland. World J Surg. 40(10):2378–81. DOI: 10.1007/s00268-016-3493-2. PMID: 26944954. PMCID: PMC5028398.
Article
34. Hitier M, Cracowski JL, Hamou C, Righini C, Bettega G. 2016; Indocyanine green fluorescence angiography for free flap monitoring: a pilot study. J Craniomaxillofac Surg. 44(11):1833–41. DOI: 10.1016/j.jcms.2016.09.001. PMID: 27745767.
Article
35. Marshall MV, Rasmussen JC, Tan IC, Aldrich MB, Adams KE, Wang X, et al. 2010; Near-infrared fluorescence imaging in humans with indocyanine green: a review and update. Open Surg Oncol J. 2(2):12–25. DOI: 10.2174/1876504101002020012. PMID: 22924087. PMCID: PMC3424734.
Article
Full Text Links
  • IJT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr