1. Park WB, Kwon NJ, Choi SJ, Kang CK, Choe PG, Kim JY, et al. Virus isolation from the first patient with SARS-CoV-2 in Korea. J Korean Med Sci. 2020; 35(7):e84. PMID:
32080990.
Article
2. Suzaki I, Kobayashi H. Coronavirus disease 2019 and nasal conditions: a review of current evidence. In Vivo. 2021; 35(3):1409–1417. PMID:
33910818.
Article
3. Cazzolla AP, Lovero R, Lo Muzio L, Testa NF, Schirinzi A, Palmieri G, et al. Taste and smell disorders in COVID-19 patients: role of IL-6. ACS Chem Neurosci. 2020; 11(17):2774–2781. PMID:
32786309.
4. Borro M, Di Girolamo P, Gentile G, De Luca O, Preissner R, Marcolongo A, et al. Evidence-based considerations exploring relations between SARS-CoV-2 pandemic and air pollution: involvement of PM2.5-mediated up-regulation of the viral receptor ACE-2. Int J Environ Res Public Health. 2020; 17(15):5573.
Article
5. Li HH, Liu CC, Hsu TW, Lin JH, Hsu JW, Li AF, et al. Upregulation of ACE2 and TMPRSS2 by particulate matter and idiopathic pulmonary fibrosis: a potential role in severe COVID-19. Part Fibre Toxicol. 2021; 18(1):11. PMID:
33706759.
Article
6. Lee Y, Min P, Lee S, Kim SW. Prevalence and duration of acute loss of smell or taste in COVID-19 patients. J Korean Med Sci. 2020; 35(18):e174. PMID:
32383370.
Article
7. von Bartheld CS, Hagen MM, Butowt R. Prevalence of chemosensory dysfunction in COVID-19 patients: a systematic review and meta-analysis reveals significant ethnic differences. ACS Chem Neurosci. 2020; 11(19):2944–2961. PMID:
32870641.
Article
8. Okada Y, Yoshimura K, Toya S, Tsuchimochi M. Pathogenesis of taste impairment and salivary dysfunction in COVID-19 patients. Jpn Dent Sci Rev. 2021; 57:111–122. PMID:
34257762.
Article
9. Seo MY, Seok H, Hwang SJ, Choi HK, Jeon JH, Sohn JW, et al. Trend of olfactory and gustatory dysfunction in COVID-19 patients in a quarantine facility. J Korean Med Sci. 2020; 35(41):e375. PMID:
33107232.
Article
10. Tung NT, Cheng PC, Chi KH, Hsiao TC, Jones T, BéruBé K, et al. Particulate matter and SARS-CoV-2: a possible model of COVID-19 transmission. Sci Total Environ. 2021; 750:141532. PMID:
32858292.
Article
11. Lembo R, Landoni G, Cianfanelli L, Frontera A. Air pollutants and SARS-CoV-2 in 33 European countries. Acta Biomed. 2021; 92(1):e2021166. PMID:
33682802.
12. Stavem K, Ghanima W, Olsen MK, Gilboe HM, Einvik G. Persistent symptoms 1.5-6 months after COVID-19 in non-hospitalised subjects: a population-based cohort study. Thorax. 2021; 76(4):405–407. PMID:
33273028.
Article
13. Hutton JL, Baracos VE, Wismer WV. Chemosensory dysfunction is a primary factor in the evolution of declining nutritional status and quality of life in patients with advanced cancer. J Pain Symptom Manage. 2007; 33(2):156–165. PMID:
17280921.
Article
14. Sehanobish E, Barbi M, Fong V, Kravitz M, Sanchez Tejera D, Asad M, et al. COVID-19-induced anosmia and ageusia are associated with younger age and lower blood eosinophil counts. Am J Rhinol Allergy. 2021; 35(6):830–839. PMID:
33813917.
Article
15. Meini S, Suardi LR, Busoni M, Roberts AT, Fortini A. Olfactory and gustatory dysfunctions in 100 patients hospitalized for COVID-19: sex differences and recovery time in real-life. Eur Arch Otorhinolaryngol. 2020; 277(12):3519–3523. PMID:
32500326.
Article
16. Zhang Z, Rowan NR, Pinto JM, London NR, Lane AP, Biswal S, et al. Exposure to particulate matter air pollution and anosmia. JAMA Netw Open. 2021; 4(5):e2111606. PMID:
34042992.
Article
17. Yu G, Bai Z, Chen Z, Chen H, Wang G, Wang G, et al. The NLRP3 inflammasome is a potential target of ozone therapy aiming to ease chronic renal inflammation in chronic kidney disease. Int Immunopharmacol. 2017; 43:203–209. PMID:
28038382.
Article
18. Sagai M, Bocci V. Mechanisms of action involved in ozone therapy: Is healing induced via a mild oxidative stress? Med Gas Res. 2011; 1(1):29. PMID:
22185664.
Article
19. Pecorelli A, Bocci V, Acquaviva A, Belmonte G, Gardi C, Virgili F, et al. NRF2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells. Toxicol Appl Pharmacol. 2013; 267(1):30–40. PMID:
23253326.
Article
20. von Bartheld CS, Mathew D, Butowt R. New study on prevalence of anosmia in COVID-19 implicates the D614G virus mutation as a major contributing factor to chemosensory dysfunction. Eur Arch Otorhinolaryngol. 2021; 278(9):3593–3594. PMID:
33788036.
Article
21. Meng X, Pan Y. COVID-19 and anosmia: the story so far. Ear Nose Throat J. 2021; 1455613211048998. PMID:
34587819.
Article
22. Ozono S, Zhang Y, Ode H, Sano K, Tan TS, Imai K, et al. SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity. Nat Commun. 2021; 12(1):848. PMID:
33558493.
Article
23. Boscutti A, Delvecchio G, Pigoni A, Cereda G, Ciappolino V, Bellani M, et al. Olfactory and gustatory dysfunctions in SARS-CoV-2 infection: a systematic review. Brain Behav Immun Health. 2021; 15:100268. PMID:
34027497.
Article
24. Strak M, Janssen N, Beelen R, Schmitz O, Karssenberg D, Houthuijs D, et al. Associations between lifestyle and air pollution exposure: potential for confounding in large administrative data cohorts. Environ Res. 2017; 156:364–373. PMID:
28395240.
Article
25. Galluzzi F, Rossi V, Bosetti C, Garavello W. Risk factors for olfactory dysfunctions in patients with SARS-CoV-2 infection. Neuroepidemiology. 2021; 55(2):154–161. PMID:
33794531.
Article
26. Schlosser RJ, Desiato VM, Storck KA, Nguyen SA, Hill JB, Washington BJ, et al. A community-based study on the prevalence of olfactory dysfunction. Am J Rhinol Allergy. 2020; 34(5):661–670. PMID:
32345032.
Article
27. Schikowski T, Sugiri D, Reimann V, Pesch B, Ranft U, Krämer U. Contribution of smoking and air pollution exposure in urban areas to social differences in respiratory health. BMC Public Health. 2008; 8(1):179. PMID:
18505547.
Article
28. Schiffman SS. Perception of taste and smell in elderly persons. Crit Rev Food Sci Nutr. 1993; 33(1):17–26. PMID:
8424850.
Article